A 题国际旅游网络的大数据分析-详细解析与代码答案(2023 年全国高校数据统计与调查分析挑战赛

请你们进行数据统计与调查分析,使用附件中的数据,回答下列问题:

问题 1: 请进行分类汇总统计,计算不同国家 1995 年至 2020 年累计旅游总人数,从哪个国家旅游出发的人数最多,哪个国家旅游到达的人数最多?

思路:直接利用pandas包的 函数对各个出发国家及到达国家的人数进行累加统计即可。

解题:首先需要读取excel表格数据。

 

import pandas as pd

import numpy as np

df=pd.read_csv('A题附件:国际旅游人数.csv')

df

接着依次统计各个国家出发和到达的总人数,并记录最大值,代码如下:

 

问题 2: 请任选一个国家,建立国家旅游出发人数的预测模型,基于该国家

1995 年至 2020 年的旅游出发人数,预测 2030 2050 年的旅游出发人数。

思路:不妨选择问题1中出发人数最多的美国(选择时最好选择年份数据较为齐全的国家),建立时间序列预测模型,较常见的模型选择有灰色模型、arima模型、holt模型等。

解题:通过数据筛选得到该国家的历年旅游数据,将数据储存在list中。

 

 ARMIA模型

 

问题 3: 请进行数据统计,建立不同国家旅游的网络模型,分析哪两个国家 之间的旅游最为频繁?并分析这种频繁关系随时间的变化。

思路:本题需要建立国家对,计算每个国家对之间的旅游人数总和,从而构建网络模型。每个节点即代表一个国家,每个边代表两个对应节点(国家)之间的旅游人次。最终输出网络关系图的邻接矩阵。

接着通过计算出的矩阵求出来往旅游人次最多的国家对即为最频繁的国家对。

依次求出该国家对历年的旅游人次,绘制折线图分析变化情况。

解题:结合前述所求,计算网络模型的邻接矩阵:

 

#代码请私戳获取

问题 4: 请分析附件中的数据,基于时间、旅游人数、旅游出发地和目的地, 你们还可以分析得出哪些结论,并进行数据的挖掘和可视化分析。

思路:可以统计出历年出发国家以及到达国家的前若干名,分析哪些国家是热门旅游国家以及随着时间发生了怎样的变化。

可以分别统计若干热门出行国家的历年出行人数变化,分析各个国家出行人数随着时间发生了怎样的变化。

还可以计算出总体的各国旅游人数均值,统计出偏离均值较远的国家,结合实际分析出现这种偏离的原因。

详细解题步骤以及代码请私戳获取~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/86788.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

19.图,图的两种存储结构

目录 一. 一些基本概念 二. 图的抽象数据类型定义 三. 图的存储结构 (1)数组表示法(邻接矩阵表示法) (a)邻接矩阵 (b)存储表示 (c)优缺点分析 &#x…

前端工程化概述

软件工程定义:将工程方法系统化地应用到软件开发中 前端发展历史 前端工程化的发展历史可以追溯到互联网的早期阶段,随着前端技术的不断演进和互联网应用的复杂化,前端工程化也逐渐成为了前端开发的重要领域。以下是前端工程化的主要发展里程…

【了解一下常见的设计模式】

文章目录 了解一下常用的设计模式(工厂、包装、关系)导语设计模式辨析系列 工厂篇工厂什么是工厂简单工厂「模式」(Simple Factory「Pattern」)简单工厂代码示例:简单计算器优点:缺点: 静态工厂模式特点: 工…

手搭手入门MyBatis-Plus

MyBatis-Plus Mybatis-Plus介绍 为简化开发而生 MyBatis-Plus(opens new window)(简称 MP)是一个 MyBatis(opens new window) 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。 特性 无侵入&#…

protobuf+netty自定义编码解码

protobufnetty自定义编 项目背景 protobufnetty自定义编码解码 比如心跳协议,客户端请求的协议是10001,在java端如何解码,心跳返回协议如何编码,将协议号带过去 // 心跳包 //10001 message c2s_heartbeat { }//10002 message …

LeetCode--HOT100题(38)

目录 题目描述:226. 翻转二叉树(简单)题目接口解题思路代码 PS: 题目描述:226. 翻转二叉树(简单) 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 LeetCode做题链…

lvs-DR模式:

lvs-DR数据包流向分析 客户端发送请求到 Director Server(负载均衡器),请求的数据报文(源 IP 是 CIP,目标 IP 是 VIP)到达内核空间。 Director Server 和 Real Server 在同一个网络中,数据通过二层数据链路…

7-42 整型关键字的散列映射

题目链接:这里 题目大意:就是写一个线性探测的散列 然鹅,我不会写(?)我一共错了两个地方 有冲突的情况下,就是线性探查然后往后找,但是我之前写的是t,应该是t (t1)%p;…在有重复关键字的时候&#xff0c…

大学生创业出路【第二弹】科创训练营

目录 🚀一、我从哪里了解到的训练营 🚀二、训练营里学习和日常 🔎学习 🔎环境和设备 🔎遇到的人 🔎团队记录视频 🚀三、感悟 ​​​​个人主页:一天三顿-不喝奶茶&#x1f39…

UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.5->2.3

目录 之前的文章: 1.5 Blend Attributes by Value 发射器更新 粒子生成 粒子更新 2.1 Static Beams ​编辑 发射器更新: 粒子生成 粒子更新 2.2 Dynamic Beams 没有开始模拟前的效果是: 开始模拟后的效果是: 发射器更新 …

数据结构入门 — 顺序表详解

前言 数据结构入门 — 顺序表详解 博客主页链接:https://blog.csdn.net/m0_74014525 关注博主,后期持续更新系列文章 文章末尾有源码 *****感谢观看,希望对你有所帮助***** 文章目录 前言一、顺序表1. 顺序表是什么2. 优缺点 二、概念及结构…

java-IONIO

一、JAVA IO 1.1. 阻塞 IO 模型 最传统的一种 IO 模型,即在读写数据过程中会发生阻塞现象。当用户线程发出 IO 请求之后,内 核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用户线…

java八股文面试[数据结构]——ArrayList和LinkedList区别

ArrayList和LinkedList的异同 二者的线程都不安全,相对线程安全的Vector,执行效率高。此外,ArrayList时实现了基于动态数组的数据结构,LinkedList基于链表的数据结构,对于随机访问get和set,ArrayList觉得优于LinkedLis…

线性回归的正则化改进(岭回归、Lasso、弹性网络),最小二乘法和最大似然估计之间关系,正则化

目录 最小二乘法 极大似然估计的思想 概率:已知分布参数-对分布参数进行估计 概率描述的是结果;似然描述的是假设/模型​编辑 似然:已知观测结果-对分布参数进行估计​编辑 对数函数消灭连乘-连乘导致算法参数消失 极大似然估计公式:将乘…

LeetCode:Hot100python版本之回溯

回溯算法其实是纯暴力搜索。for循环嵌套是写不出的 组合:没有顺序 排列:有顺序 回溯法可以抽象为树形结构。只有在回溯算法中递归才会有返回值。 46. 全排列 排列是有顺序的。 组合类问题用startindex,排序类问题用used,来标…

【网络】DNS | ICMP | NAT | 代理服务器

🐱作者:一只大喵咪1201 🐱专栏:《网络》 🔥格言:你只管努力,剩下的交给时间! 前面几篇文章虽然讲介绍了整个网络通信的协议栈,我们也知道了完整的网络通信过程&#xff…

【图像去噪】基于混合自适应(EM 自适应)实现自适应图像去噪研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

如何拉取Gitee / GitHub上的Unity项目并成功运行

前言 由于目前大部分人使用的仓库都是Gitee或者是GitHub,包括小编的公司所使用的项目仓库也包括了Gitee;我们需要学习技术栈时都会去百度或者是去GitHub上看看别人的项目观摩学习,可能很多小白在遇到拉取代码时出现各种问题,或者…

Server2016安装SQL server数据库遇到异常解决

首先看几个会出现的异常,下边看解决办法: 第一步: 先修改安装包x86\setup目录下的setupsql.exe,以Xp,SP3兼容模式运行, 这个右键,属性,兼容性,修改就行,类似这样 第二步: 修改c:…

【Rust】Rust学习 第十六章无畏并发

安全且高效的处理并发编程是 Rust 的另一个主要目标。并发编程(Concurrent programming),代表程序的不同部分相互独立的执行,而 并行编程(parallel programming)代表程序不同部分于同时执行,这两…