计算机视觉 -- 图像分割

文章目录

  • 1. 图像分割
  • 2. FCN
    • 2.1 语义分割– FCN (Fully Convolutional Networks)
    • 2.2 FCN--deconv
    • 2.3 Unpool
    • 2.4 拓展–DeconvNet
  • 3. 实例分割
    • 3.1 实例分割--Mask R-CNN
    • 3.2 Mask R-CNN
    • 3.3 Faster R-CNN与 Mask R-CNN
    • 3.4 Mask R-CNN:Resnet101
    • 3.5 特征金字塔-Feature Pyramid Networks(FPN)
    • 3.6 Mask R-CNN:FPN
    • 3.7 Faster-RCNN:Roi pooling
    • 3.8 Mask R-CNN:Roi-Align
    • 3.9 Mask R-CNN:分割掩膜
    • 3.10 Mask R-CNN—总结
    • 3.11 Mask R-CNN:COCO数据集
  • 4. 视频结构化
  • 5. 代码示例
    • 5.1 nets
    • 5.2 mask_rcnn.py
    • 5.3 train.py
    • 5.4 predict.py

1. 图像分割

引入问题:
在自动驾驶系统中,如果用之前的检测网络(例如Faster-Rcnn),试想,倘若前方有一处急转弯,系统只在道路上给出一个矩形标识,这样一来车辆很有可能判断不出是该避让还是径直上前,车祸一触即发。因此,对新技术的诉求应运而生,该技术须能识别具体路况,以指引车辆顺利过弯。
在这里插入图片描述

图像分割即为图片的每个对象创建一个像素级的掩膜,该技术可使大家对图像中的对象有更深入的了解。
在这里插入图片描述

图像分割可分为两种:语义分割与实例分割。

  • 左图五个对象均为人,因此语义分割会将这五个对象视为一个整体。
  • 右图同样也有五个对象(亦均为人),但同一类别的不同对象在此被视为不同的实例,这就是实例分割。

在这里插入图片描述

图像分类,语义分割,目标检测,实例分割
在这里插入图片描述

2. FCN

2.1 语义分割– FCN (Fully Convolutional Networks)

全卷积神经网络,顾名思义,该网络中没有全连接层,都是一些卷卷积的结构
FCN最主要的一个用法就是用于语义分割

在这里插入图片描述

我们分类使用的网络通常会在最后连接几层全连接层,它会将原来二维的矩阵(图片)压扁成一维的,从而丢失了空间信息,最后训练输出一个标量,这就是我们的分类标签。

FCN网络和一般的网络的最大不同是,FCN产生的输出和输入的维度保持一致,即改变原本的CNN网络末端的全连接层,将其调整为卷积层,这样原本的分类网络最终输出一个热度图类型的图像。
在这里插入图片描述

一句话概括原理:
FCN将传统卷积网络后面的全连接层换成了卷积层,这样网络输出不再是类别而是heatmap;同时为了解决因为卷积和池化对图像尺寸的影响,提出使用上采样的方式恢复尺寸。

核心思想:

  • 不含全连接层(fc)的全卷积(fully conv)网络。可适应任意尺寸输入。
  • 增大数据尺寸的反卷积(deconv)层。能够输出精细的结果。

FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。

FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

最后逐个像素计算softmax分类的损失, 相当于每一个像素对应一个训练样本。

对全卷积网络的末端再进行upsampling(上采样),即可得到和原图大小一样的输出,这就是热度图了。这里上采样采用了deconvolutional(反卷积)的方法。

反卷积/转置卷积:它并不是正向卷积的完全逆过程。反卷积是一种特殊的正向卷积,先按照一定的比例通过补0来扩大输入图像的尺寸,接着旋转卷积核,再进行正向卷积。

大家可能对于反卷积的认识有一个误区,以为通过反卷积就可以获取到经过卷积之前的图片, 实际上通过反卷积操作并不能还原出卷积之前的图片, 只能还原出卷积之前图片的尺寸。

卷积和反卷积,并没有什么关系,操作的过程 也都是不可逆的。

2.2 FCN–deconv

反卷积用在什么地方?

  1. 反卷积/转置卷积在语义分割领域应用很广,如果说pooling层用于特征降维,那么在多个pooling层后,就需要用转置卷积来进行分辨率的恢复。
  2. 如果up-sampling采用双线性插值进行分辨率的提升,这种提升是非学习的。采用反卷积来完成上采样的工作,就可以通过学习的方式得到更高的精度

在这里插入图片描述

反卷积具体步骤:

  1. 将上一层的卷积核反转(上下左右方向进行反转)。
  2. 将上一层卷积的结果作为输入,做补0扩充操作,即往每一个元素后面补0。这一步是根据步长来的,对于每个元素沿着步长方向补(步长-1)个0。例如,步长为1就不用补0了。
  3. 在扩充后的输入基础上再对整体补0。以原始输入的shape作为输出shape,按照卷积padding规则,计算pading的补0的位置及个数,得到补0的位置及个数。
  4. 将补0后的卷积结果作为真正的输入,反转后的卷积核为filter,进行步长为1的卷积操作。

注意:计算padding按规则补0时,统一按照padding=‘SAME’、步长为1*1的方式来计算

在这里插入图片描述

卷积:
在这里插入图片描述

反卷积:
在这里插入图片描述

反卷积的缺点:

  1. 卷积矩阵是稀疏的(有大量的0),因此大量的信息是无用的;
  2. 求卷积矩阵的转置矩阵是非常耗费计算资源的。

2.3 Unpool

池化操作中最常见的最大池化和平均池化,因此最常见的反池化操作有反最大池化和反平均池化。反最大池化需要记录池化时最大值的位置,反平均池化不需要此过程。
在这里插入图片描述

2.4 拓展–DeconvNet

这样的对称结构有种自编码器的感觉在里面,先编码再解码。
在这里插入图片描述

3. 实例分割

在这里插入图片描述

实例分割(instance segmentation)的难点在于:需要同时检测出目标的位置并且对目标进行分割,所以这就需要融合目标检测(框出目标的位置)以及语义分割(对像素进行分类,分割出目标)方法。

3.1 实例分割–Mask R-CNN

Mask R-CNN可算作是Faster R-CNN的升级版。
Faster R-CNN广泛用于目标检测。对于给定图像,它会给图中每个对象加上类别标签与边界框坐标。
Mask R-CNN框架是以Faster R-CNN为基础而架构的。因此,针对给定图像, Mask R-CNN不仅会给每个对象添加类标签与边界框坐标,还会返回其对象掩膜。

在这里插入图片描述

Mask R-CNN的抽象架构:
在这里插入图片描述

3.2 Mask R-CNN

Mask R-CNN在进行目标检测的同时进行实例分割,取得了出色的效果
在这里插入图片描述

3.3 Faster R-CNN与 Mask R-CNN

Mask-RCNN 大体框架还是 Faster-RCNN 的框架,可以说在基础特征网络之后又加入了全连接的分割子网,由原来的两个任务(分类+回归)变为了三个任务(分类+回归+分割)。Mask R-CNN 是一个两阶段的框架,第一个阶段扫描图像并生成候选区域(proposals,即有可能包含一个目标的区域),第二阶段分类候选区域并生成边界框和掩码。

与Faster RCNN的区别:

  1. 使用ResNet网络作为backbone
  2. 将 Roi Pooling 层替换成了 RoiAlign;
  3. 添加并列的 Mask 层;
  4. 引入FPN 和 FCN

在这里插入图片描述

  1. 输入一幅你想处理的图片,然后进行对应的预处理操作,获得预处理后的图片;
  2. 将其输入到一个预训练好的神经网络中(ResNet等)获得对应的feature map;
  3. 对这个feature map中的每一点设定预定个的ROI,从而获得多个候选ROI;
  4. 将这些候选的ROI送入RPN网络进行二值分类(positive或negative)和BB回归,过滤掉一部分候选的ROI(截止到目前,Mask和Faster完全相同);
  5. 对这些剩下的ROI进行ROIAlign操作(ROIAlign为Mask R-CNN创新点1,比ROIPooling有长足进步);
  6. 最后,对这些ROI进行分类(N类别分类)、BB回归和MASK生成(在每一个ROI里面进行FCN操作)(引入FCN生成Mask是创新点2,使得此网络可以进行分割型任务)。
  • backbone:Mask-RCNN使用 Resnet101作为主干特征提取网络, 对应着图像中的CNN部分。(当然也可以使用别的CNN网络)
  • 在进行特征提取后,利用长宽压缩了两次、三次、四次、五次的特征层来进行特征金字塔结构的构造。

在这里插入图片描述

3.4 Mask R-CNN:Resnet101

Resnet 中 Conv Block和Identity Block的结构:
其中Conv Block输入和输出的维度是不一样的,所以不能连续串联,它的作用是改变网络的维度;Identity Block输入维度和输出维度相同,可以串联,用于加深网络
在这里插入图片描述

3.5 特征金字塔-Feature Pyramid Networks(FPN)

  • 目标检测任务和语义分割任务里面常常需要检测小目标。但是当小目标比较小时,可能在原图里面只有几十个像素点。
  • 对于深度卷积网络,从一个特征层卷积到另一个特征层,无论步长是1还是2还是更多,卷积核都要遍布整个图片进行卷积,大的目标所占的像素点比小目标多,所以大的目标被经过卷积核的次数远比小的目标多,所以在下一个特征层里,会更多的反应大目标的特点。
  • 特别是在步长大于等于2的情况下,大目标的特点更容易得到保留,小目标的特征点容易被跳过。
  • 因此,经过很多层的卷积之后,小目标的特点会越来越少。

在这里插入图片描述

特征图(feature map)用蓝色轮廓表示, 较粗的轮廓表示语义上更强的特征图。
a. 使用图像金字塔构建特征金字塔。 特征是根据每个不同大小比例的图像独立计算的,每计算一次特征都需要resize一下图片大小,耗时,速度很慢。
b. 检测系统都在采用的为了更快地检测而使用的单尺度特征检测。
c. 由卷积计算的金字塔特征层次来进行目标位置预测,但底层feature map特征表达能力不足。
d. 特征金字塔网络(FPN)和b,c一样快, 但更准确。

FPN的提出是为了实现更好的feature maps融合,一般的网络都是直接使用最后一层的feature maps,虽然最后一层的 feature maps 语义强,但是位置和分辨率都比较低,容易 检测不到比较小的物体。FPN的功能就是融合了底层到高层 的feature maps ,从而充分的利用了提取到的各个阶段的特征(ResNet中的C2-C5)。

3.6 Mask R-CNN:FPN

特征金字塔FPN的构建
在这里插入图片描述

  • 特征金字塔FPN的构建是为了实现特征多尺度的融合,在Mask R-CNN当中,我们取出在主干特征提取网络中长宽压缩了两次 C2、三次C3、四次C4、五次C5的结果来进行特征金字塔结构的构造。
  • P2-P5是将来用于预测物体的bbox,box- regression,mask的。
  • P2-P6是用于训练RPN的,即P6只用于RPN 网络中。

3.7 Faster-RCNN:Roi pooling

为何需要RoI Pooling?
对于传统的CNN(如AlexNet和VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。
有2种解决办法:

  1. 从图像中crop一部分传入网络将图像(破坏了图像的完整结构)
  2. warp成需要的大小后传入网络(破坏了图像原始形状信息)

在这里插入图片描述

RoI Pooling原理
新参数pooled_w、pooled_h和spatial_scale(1/16)

RoI Pooling layer forward过程:

  1. 由于proposal是对应MN尺度的,所以首先使用spatial_scale参数将其映射回(M/16)(N/16)大小的feature map尺度;
  2. 再将每个proposal对应的feature map区域水平分为poold_w * pooled_h的网格;
  3. 对网格的每一份都进行max pooling处理。

这样处理后,即使大小不同的proposal输出结果都是poold_w * pooled_h固定大小,实现了固定长度输出。

再将每个proposal对应的feature map区 域水平分为poold_w * pooled_h的网格;

对网格的每一份都进行max pooling处理

这样处理后,即使大小不同的proposal输 出结果都是poold_w * pooled_h固定大小, 实现了固定长度输出。
在这里插入图片描述

3.8 Mask R-CNN:Roi-Align

Roi-Align
Mask-RCNN中提出了一个新的思想就是RoIAlign,其实RoIAlign就是在RoI pooling上稍微改动过来的,但是为什么在模型中不继续使用RoI pooling呢?
在这里插入图片描述

在RoI pooling中出现了两次的取整,虽然在feature maps上取整看起来只是小数级别的数,但是当把feature map还原到原图上时就会出现很大的偏差,比如第一次的取整是舍去了0.78 (665/32=20.78),还原到原图时是20*32=640,第一次取整就存在了25个像素点的偏差,在第二次的取整后的偏差更加的大。对于分类和物体检测来说可能这不是一个很大的误差,但是对于实例分割而言,这是一个非常大的偏差,因为mask出现没对齐的话在视觉上是很明显的。而RoIAlign的提出就是为了解决这个不对齐问题。

在这里插入图片描述

RoIAlign的思想其实很简单,就是取消了取整的这种粗暴做法,而是通过双线性插值来得到固定四个点坐标的像素值,从而使得不连续的操作变得连续起来,返回到原图的时候误差也就更加的小。

它充分的利用了原图中虚拟点(比如20.56这个浮点数。像素位置都是整数值,没有浮点值)四周的四个真实存在的像素值来共同决定目标图中的一个像素值,即可以将20.56这个虚拟的位置点对应的像素值估计出来。

在这里插入图片描述

  • 蓝色的虚线框表示卷积后获得的feature map,黑色实线框表示ROI feature。
  • 最后需要输出的大小是2x2,那么我们就利用双线性插值来估计这些蓝点(虚拟坐标点,又称双线性插值的网格点)处所对应的像素值,最后得到相应的输出。
  • 然后在每一个橘红色的区域里面进行max pooling或者average pooling操作,获得最终2x2的输出结果。我们的整个过程中没有用到量化操作,没有引入误差,即原图中的像素和feature map中的像素是完全对齐的,没有偏差,这不仅会提高检测的精度,同时也会有利于实例分割。

3.9 Mask R-CNN:分割掩膜

获得感兴趣区域(ROI)后,给已有框架加上一个掩膜分支,每个囊括特定对象的区域都会被赋予一个掩膜。每个区域都会被赋予一个m X m掩膜,并按比例放大以便推断。
在这里插入图片描述

mask语义分割信息的获取
在之前的步骤中,我们获得了预测框,我们把这个预测框作为mask模型的区域截取部分,利用这个预测框对mask模型中用到的公用特征层进行截取。

截取后,利用mask模型再对像素点进行分类,获得语义分割结果。

mask分支采用FCN对每个RoI产生一个Kmm的输出,即K个分辨率为m*m的二值的掩膜,K为分类物体的种类数目。

Kmm二值mask结构解释:最终的FCN输出一个K层的mask,每一层为一类。用0.5作为阈值进行二值化,产生背景和前景的分割Mask。

在这里插入图片描述

对于预测的二值掩膜输出,我们对每个像素点应用sigmoid函数(或softmax等),整体损失定义为交叉熵。引入预测K个输出的机制,允许每个类都生成独立的掩膜,避免类间竞争。这样做解耦了掩膜和种类预测。

在这里插入图片描述

Mask R-CNN的损失函数为:
在这里插入图片描述

Lmask 使得网络能够输出每一类的 mask,且不会有不同类别 mask 间的竞争:

  • 分类网络分支预测 object 类别标签,以选择输出 mask。对每一个ROI,如果检测得到的ROI属于哪一个分类,就只使用哪一个分支的交叉熵误差作为误差值进行计算。
  • 举例说明:分类有3类(猫,狗,人),检测得到当前ROI属于“人”这一类,那么所使用的Lmask为 “人”这一分支的mask,即每个class类别对应一个mask可以有效避免类间竞争(其他class不贡献Loss)
  • 对每一个像素应用sigmoid,然后取RoI上所有像素的交叉熵的平均值作为Lmask。

最后网络输出为1414或者2828大小的mask,如何与原图目标对应?
需要一个后处理,将模型预测的mask通过resize得到与proposal中目标相同大小的mask。

在这里插入图片描述

3.10 Mask R-CNN—总结

主要改进点:

  1. 基础网络的增强,ResNet-101+FPN的组合可以说是现在特征学习的王牌了;
  2. 分割 loss 的改进, 二值交叉熵会使得每一类的 mask 不相互竞争,而不是和其他类别的 mask 比较
  3. ROIAlign解决不对齐的问题,就是对 feature map 的插值。直接的ROIPooling的那种量化操作会使得得到的mask与实际物体位置有一个微小偏移,是工程上更好的实现方式。

3.11 Mask R-CNN:COCO数据集

MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的 Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取图像中的目标,通过精确的segmentation 进行位置的标定。

包括:

  1. 对象分割;
  2. 在上下文中可识别;
  3. 超像素分割;
  4. 330K图像(> 200K标记);
  5. 150万个对象实例;
  6. 80个对象类别;
  7. 91个类别;
  8. 每张图片5个字幕;
  9. 有关键点的250,000人;

4. 视频结构化

视频结构化:
原始的视频图像实际上是一种非结构化的数据,它不能直接被计算机读取和识别,为了 让视频图像在安防等领域更好的应用,就必须使用智能视频分析技术对视频图像进行结构化处理,也就是视频结构化。

视频结构化,即视频数据的结构化处理,就是通过对原始视频进行智能分析,提取出关键信息

一段视频里面,需要提取的关键信息有哪些?
主要是有两类:

  1. 第一类是运动目标的识别,也就是画面中运动对象的识别,是人还是车;
  2. 第二类是运动目标特征的识别,也就是画面中运动的人、车、物有什么特征;

5. 代码示例

5.1 nets

layers.py

import tensorflow as tf
from keras.engine import Layer
import numpy as np
from utils import utils

#----------------------------------------------------------#
#   Proposal Layer
#   该部分代码用于将先验框转化成建议框
#----------------------------------------------------------#

def apply_box_deltas_graph(boxes, deltas):
    # 计算先验框的中心和宽高
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # 计算出调整后的先验框的中心和宽高
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= tf.exp(deltas[:, 2])
    width *= tf.exp(deltas[:, 3])
    # 计算左上角和右下角的点的坐标
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
    return result


def clip_boxes_graph(boxes, window):
    """
    boxes: [N, (y1, x1, y2, x2)]
    window: [4] in the form y1, x1, y2, x2
    """
    # Split
    wy1, wx1, wy2, wx2 = tf.split(window, 4)
    y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
    # Clip
    y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
    x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
    y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
    x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
    clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
    clipped.set_shape((clipped.shape[0], 4))
    return clipped

class ProposalLayer(Layer):

    def __init__(self, proposal_count, nms_threshold, config=None, **kwargs):
        super(ProposalLayer, self).__init__(**kwargs)
        self.config = config
        self.proposal_count = proposal_count
        self.nms_threshold = nms_threshold
    # [rpn_class, rpn_bbox, anchors]
    def call(self, inputs):

        # 代表这个先验框内部是否有物体[batch, num_rois, 1]
        scores = inputs[0][:, :, 1]

        # 代表这个先验框的调整参数[batch, num_rois, 4]
        deltas = inputs[1]

        # [0.1 0.1 0.2 0.2],改变数量级
        deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])

        # Anchors
        anchors = inputs[2]

        # 筛选出得分前6000个的框
        pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1])
        # 获得这些框的索引
        ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,
                         name="top_anchors").indices
        
        # 获得这些框的得分
        scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        # 获得这些框的调整参数
        deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        # 获得这些框对应的先验框
        pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x),
                                    self.config.IMAGES_PER_GPU,
                                    names=["pre_nms_anchors"])

        # [batch, N, (y1, x1, y2, x2)]
        # 对先验框进行解码
        boxes = utils.batch_slice([pre_nms_anchors, deltas],
                                  lambda x, y: apply_box_deltas_graph(x, y),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors"])

        # [batch, N, (y1, x1, y2, x2)]
        # 防止超出图片范围
        window = np.array([0, 0, 1, 1], dtype=np.float32)
        boxes = utils.batch_slice(boxes,
                                  lambda x: clip_boxes_graph(x, window),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors_clipped"])


        # 非极大抑制
        def nms(boxes, scores):
            indices = tf.image.non_max_suppression(
                boxes, scores, self.proposal_count,
                self.nms_threshold, name="rpn_non_max_suppression")
            proposals = tf.gather(boxes, indices)
            # 如果数量达不到设置的建议框数量的话
            # 就padding
            padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)
            proposals = tf.pad(proposals, [(0, padding), (0, 0)])
            return proposals

        proposals = utils.batch_slice([boxes, scores], nms,
                                      self.config.IMAGES_PER_GPU)
        return proposals

    def compute_output_shape(self, input_shape):
        return (None, self.proposal_count, 4)




#----------------------------------------------------------#
#   ROIAlign Layer
#   利用建议框在特征层上截取内容
#----------------------------------------------------------#

def log2_graph(x):
    return tf.log(x) / tf.log(2.0)

def parse_image_meta_graph(meta):
    """
    将meta里面的参数进行分割
    """
    image_id = meta[:, 0]
    original_image_shape = meta[:, 1:4]
    image_shape = meta[:, 4:7]
    window = meta[:, 7:11]  # (y1, x1, y2, x2) window of image in in pixels
    scale = meta[:, 11]
    active_class_ids = meta[:, 12:]
    return {
        "image_id": image_id,
        "original_image_shape": original_image_shape,
        "image_shape": image_shape,
        "window": window,
        "scale": scale,
        "active_class_ids": active_class_ids,
    }

class PyramidROIAlign(Layer):
    def __init__(self, pool_shape, **kwargs):
        super(PyramidROIAlign, self).__init__(**kwargs)
        self.pool_shape = tuple(pool_shape)

    def call(self, inputs):
        # 建议框的位置
        boxes = inputs[0]

        # image_meta包含了一些必要的图片信息
        image_meta = inputs[1]

        # 取出所有的特征层[batch, height, width, channels]
        feature_maps = inputs[2:]

        y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
        h = y2 - y1
        w = x2 - x1

        # 获得输入进来的图像的大小
        image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]
        
        # 通过建议框的大小找到这个建议框属于哪个特征层
        image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)
        roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))
        roi_level = tf.minimum(5, tf.maximum(
            2, 4 + tf.cast(tf.round(roi_level), tf.int32)))
        # batch_size, box_num
        roi_level = tf.squeeze(roi_level, 2)

        # Loop through levels and apply ROI pooling to each. P2 to P5.
        pooled = []
        box_to_level = []
        # 分别在P2-P5中进行截取
        for i, level in enumerate(range(2, 6)):
            # 找到每个特征层对应box
            ix = tf.where(tf.equal(roi_level, level))
            level_boxes = tf.gather_nd(boxes, ix)
            box_to_level.append(ix)

            # 获得这些box所属的图片
            box_indices = tf.cast(ix[:, 0], tf.int32)

            # 停止梯度下降
            level_boxes = tf.stop_gradient(level_boxes)
            box_indices = tf.stop_gradient(box_indices)

            # Result: [batch * num_boxes, pool_height, pool_width, channels]
            pooled.append(tf.image.crop_and_resize(
                feature_maps[i], level_boxes, box_indices, self.pool_shape,
                method="bilinear"))

        pooled = tf.concat(pooled, axis=0)

        # 将顺序和所属的图片进行堆叠
        box_to_level = tf.concat(box_to_level, axis=0)
        box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)
        box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
                                 axis=1)

        # box_to_level[:, 0]表示第几张图
        # box_to_level[:, 1]表示第几张图里的第几个框
        sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]
        # 进行排序,将同一张图里的某一些聚集在一起
        ix = tf.nn.top_k(sorting_tensor, k=tf.shape(
            box_to_level)[0]).indices[::-1]

        # 按顺序获得图片的索引
        ix = tf.gather(box_to_level[:, 2], ix)
        pooled = tf.gather(pooled, ix)

        # 重新reshape为原来的格式
        # 也就是
        # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]
        shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0)
        pooled = tf.reshape(pooled, shape)
        return pooled

    def compute_output_shape(self, input_shape):
        return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], )


#----------------------------------------------------------#
#   Detection Layer
#   
#----------------------------------------------------------#

def refine_detections_graph(rois, probs, deltas, window, config):
    """细化分类建议并过滤重叠部分并返回最终结果探测。
    Inputs:
        rois: [N, (y1, x1, y2, x2)] in normalized coordinates
        probs: [N, num_classes]. Class probabilities.
        deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific
                bounding box deltas.
        window: (y1, x1, y2, x2) in normalized coordinates. The part of the image
            that contains the image excluding the padding.

    Returns detections shaped: [num_detections, (y1, x1, y2, x2, class_id, score)] where
        coordinates are normalized.
    """
    # 找到得分最高的类
    class_ids = tf.argmax(probs, axis=1, output_type=tf.int32)
    # 序号+类
    indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1)
    # 取出成绩
    class_scores = tf.gather_nd(probs, indices)
    # 还有框的调整参数
    deltas_specific = tf.gather_nd(deltas, indices)
    # 进行解码
    # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
    refined_rois = apply_box_deltas_graph(
        rois, deltas_specific * config.BBOX_STD_DEV)
    # 防止超出0-1
    refined_rois = clip_boxes_graph(refined_rois, window)

    # 去除背景
    keep = tf.where(class_ids > 0)[:, 0]
    # 去除背景和得分小的区域
    if config.DETECTION_MIN_CONFIDENCE:
        conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0]
        keep = tf.sets.set_intersection(tf.expand_dims(keep, 0),
                                        tf.expand_dims(conf_keep, 0))
        keep = tf.sparse_tensor_to_dense(keep)[0]

    # 获得除去背景并且得分较高的框还有种类与得分
    # 1. Prepare variables
    pre_nms_class_ids = tf.gather(class_ids, keep)
    pre_nms_scores = tf.gather(class_scores, keep)
    pre_nms_rois = tf.gather(refined_rois,   keep)
    unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0]

    def nms_keep_map(class_id):

        ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0]

        class_keep = tf.image.non_max_suppression(
                tf.gather(pre_nms_rois, ixs),
                tf.gather(pre_nms_scores, ixs),
                max_output_size=config.DETECTION_MAX_INSTANCES,
                iou_threshold=config.DETECTION_NMS_THRESHOLD)

        class_keep = tf.gather(keep, tf.gather(ixs, class_keep))

        gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0]
        class_keep = tf.pad(class_keep, [(0, gap)],
                            mode='CONSTANT', constant_values=-1)

        class_keep.set_shape([config.DETECTION_MAX_INSTANCES])
        return class_keep

    # 2. 进行非极大抑制
    nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids,
                         dtype=tf.int64)
    # 3. 找到符合要求的需要被保留的建议框
    nms_keep = tf.reshape(nms_keep, [-1])
    nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0])
    # 4. Compute intersection between keep and nms_keep
    keep = tf.sets.set_intersection(tf.expand_dims(keep, 0),
                                    tf.expand_dims(nms_keep, 0))
    keep = tf.sparse_tensor_to_dense(keep)[0]

    # 寻找得分最高的num_keep个框
    roi_count = config.DETECTION_MAX_INSTANCES
    class_scores_keep = tf.gather(class_scores, keep)
    num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count)
    top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1]
    keep = tf.gather(keep, top_ids)

    # Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
    detections = tf.concat([
        tf.gather(refined_rois, keep),
        tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis],
        tf.gather(class_scores, keep)[..., tf.newaxis]
        ], axis=1)

    # 如果达不到数量的话就padding
    gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0]
    detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT")
    return detections

def norm_boxes_graph(boxes, shape):
    h, w = tf.split(tf.cast(shape, tf.float32), 2)
    scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)
    shift = tf.constant([0., 0., 1., 1.])
    return tf.divide(boxes - shift, scale)

class DetectionLayer(Layer):

    def __init__(self, config=None, **kwargs):
        super(DetectionLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        rois = inputs[0]
        mrcnn_class = inputs[1]
        mrcnn_bbox = inputs[2]
        image_meta = inputs[3]

        # 找到window的小数形式
        m = parse_image_meta_graph(image_meta)
        image_shape = m['image_shape'][0]
        window = norm_boxes_graph(m['window'], image_shape[:2])

        # Run detection refinement graph on each item in the batch
        detections_batch = utils.batch_slice(
            [rois, mrcnn_class, mrcnn_bbox, window],
            lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config),
            self.config.IMAGES_PER_GPU)

        # Reshape output
        # [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] in
        # normalized coordinates
        return tf.reshape(
            detections_batch,
            [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6])

    def compute_output_shape(self, input_shape):
        return (None, self.config.DETECTION_MAX_INSTANCES, 6)


#----------------------------------------------------------#
#   Detection Target Layer
#   该部分代码会输入建议框
#   判断建议框和真实框的重合情况
#   筛选出内部包含物体的建议框
#   利用建议框和真实框编码
#   调整mask的格式使得其和预测格式相同
#----------------------------------------------------------#

def overlaps_graph(boxes1, boxes2):
    """
    用于计算boxes1和boxes2的重合程度
    boxes1, boxes2: [N, (y1, x1, y2, x2)].
    返回 [len(boxes1), len(boxes2)]
    """
    b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1),
                            [1, 1, tf.shape(boxes2)[0]]), [-1, 4])
    b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1])
    b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1)
    b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1)
    y1 = tf.maximum(b1_y1, b2_y1)
    x1 = tf.maximum(b1_x1, b2_x1)
    y2 = tf.minimum(b1_y2, b2_y2)
    x2 = tf.minimum(b1_x2, b2_x2)
    intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0)
    b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)
    b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)
    union = b1_area + b2_area - intersection
    iou = intersection / union
    overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]])
    return overlaps


def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config):
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # 移除之前获得的padding的部分
    proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros,
                                   name="trim_gt_class_ids")
    gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2,
                         name="trim_gt_masks")

    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = tf.where(gt_class_ids < 0)[:, 0]
    non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]
    crowd_boxes = tf.gather(gt_boxes, crowd_ix)
    gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)
    gt_boxes = tf.gather(gt_boxes, non_crowd_ix)
    gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2)

    # 计算建议框和所有真实框的重合程度 [proposals, gt_boxes]
    overlaps = overlaps_graph(proposals, gt_boxes)

    # 计算和 crowd boxes 的重合程度 [proposals, crowd_boxes]
    crowd_overlaps = overlaps_graph(proposals, crowd_boxes)
    crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
    no_crowd_bool = (crowd_iou_max < 0.001)

    # Determine positive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. 正样本建议框和真实框的重合程度大于0.5
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. 负样本建议框和真实框的重合程度小于0.5,Skip crowds.
    negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # 进行正负样本的平衡
    # 取出最大33%的正样本
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # 保持正负样本比例
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # 获得正样本和负样本
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # 获取建议框和真实框重合程度
    positive_overlaps = tf.gather(overlaps, positive_indices)
    
    # 判断是否有真实框
    roi_gt_box_assignment = tf.cond(
        tf.greater(tf.shape(positive_overlaps)[1], 0),
        true_fn = lambda: tf.argmax(positive_overlaps, axis=1),
        false_fn = lambda: tf.cast(tf.constant([]),tf.int64)
    )
    # 找到每一个建议框对应的真实框和种类
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # 解码获得网络应该有得预测结果
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # 切换mask的形式[N, height, width, 1]
    transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)
    
    # 取出对应的层
    roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)

    # Compute mask targets
    boxes = positive_rois
    if config.USE_MINI_MASK:
        # Transform ROI coordinates from normalized image space
        # to normalized mini-mask space.
        y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)
        gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1)
        gt_h = gt_y2 - gt_y1
        gt_w = gt_x2 - gt_x1
        y1 = (y1 - gt_y1) / gt_h
        x1 = (x1 - gt_x1) / gt_w
        y2 = (y2 - gt_y1) / gt_h
        x2 = (x2 - gt_x1) / gt_w
        boxes = tf.concat([y1, x1, y2, x2], 1)
    box_ids = tf.range(0, tf.shape(roi_masks)[0])
    masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes,
                                     box_ids,
                                     config.MASK_SHAPE)
    # Remove the extra dimension from masks.
    masks = tf.squeeze(masks, axis=3)

    # 防止resize后的结果不是1或者0
    masks = tf.round(masks)

    # 一般传入config.TRAIN_ROIS_PER_IMAGE个建议框进行训练,
    # 如果数量不够则padding
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])
    masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)])

    return rois, roi_gt_class_ids, deltas, masks

def trim_zeros_graph(boxes, name='trim_zeros'):
    """
    如果前一步没有满POST_NMS_ROIS_TRAINING个建议框,会有padding
    要去掉padding
    """
    non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool)
    boxes = tf.boolean_mask(boxes, non_zeros, name=name)
    return boxes, non_zeros

class DetectionTargetLayer(Layer):
    """找到建议框的ground_truth

    Inputs:
    proposals: [batch, N, (y1, x1, y2, x2)]建议框
    gt_class_ids: [batch, MAX_GT_INSTANCES]每个真实框对应的类
    gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]真实框的位置
    gt_masks: [batch, height, width, MAX_GT_INSTANCES]真实框的语义分割情况

    Returns: 
    rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]内部真实存在目标的建议框
    target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]每个建议框对应的类
    target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)]每个建议框应该有的调整参数
    target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width]每个建议框语义分割情况
    """

    def __init__(self, config, **kwargs):
        super(DetectionTargetLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        proposals = inputs[0]
        gt_class_ids = inputs[1]
        gt_boxes = inputs[2]
        gt_masks = inputs[3]

        # 对真实框进行编码
        names = ["rois", "target_class_ids", "target_bbox", "target_mask"]
        outputs = utils.batch_slice(
            [proposals, gt_class_ids, gt_boxes, gt_masks],
            lambda w, x, y, z: detection_targets_graph(
                w, x, y, z, self.config),
            self.config.IMAGES_PER_GPU, names=names)
        return outputs

    def compute_output_shape(self, input_shape):
        return [
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # rois
            (None, self.config.TRAIN_ROIS_PER_IMAGE),  # class_ids
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # deltas
            (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0],
             self.config.MASK_SHAPE[1])  # masks
        ]

    def compute_mask(self, inputs, mask=None):
        return [None, None, None, None]


mrcnn_training.py

import tensorflow as tf
import keras.backend as K
import random
import numpy as np
import logging
from utils import utils
from utils.anchors import compute_backbone_shapes,generate_pyramid_anchors
############################################################
#  Loss Functions
############################################################

def batch_pack_graph(x, counts, num_rows):
    """Picks different number of values from each row
    in x depending on the values in counts.
    """
    outputs = []
    for i in range(num_rows):
        outputs.append(x[i, :counts[i]])
    return tf.concat(outputs, axis=0)

def smooth_l1_loss(y_true, y_pred):
    """Implements Smooth-L1 loss.
    y_true and y_pred are typically: [N, 4], but could be any shape.
    """
    diff = K.abs(y_true - y_pred)
    less_than_one = K.cast(K.less(diff, 1.0), "float32")
    loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5)
    return loss


def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Cross entropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox):
    """Return the RPN bounding box loss graph.

    config: the model config object.
    target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))].
        Uses 0 padding to fill in unsed bbox deltas.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
    """
    # Positive anchors contribute to the loss, but negative and
    # neutral anchors (match value of 0 or -1) don't.
    rpn_match = K.squeeze(rpn_match, -1)
    indices = tf.where(K.equal(rpn_match, 1))

    # Pick bbox deltas that contribute to the loss
    rpn_bbox = tf.gather_nd(rpn_bbox, indices)

    # Trim target bounding box deltas to the same length as rpn_bbox.
    batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1)
    target_bbox = batch_pack_graph(target_bbox, batch_counts,
                                   config.IMAGES_PER_GPU)

    loss = smooth_l1_loss(target_bbox, rpn_bbox)
    
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def mrcnn_class_loss_graph(target_class_ids, pred_class_logits,
                           active_class_ids):
    """Loss for the classifier head of Mask RCNN.

    target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero
        padding to fill in the array.
    pred_class_logits: [batch, num_rois, num_classes]
    active_class_ids: [batch, num_classes]. Has a value of 1 for
        classes that are in the dataset of the image, and 0
        for classes that are not in the dataset.
    """
    # During model building, Keras calls this function with
    # target_class_ids of type float32. Unclear why. Cast it
    # to int to get around it.
    target_class_ids = tf.cast(target_class_ids, 'int64')

    # Find predictions of classes that are not in the dataset.
    pred_class_ids = tf.argmax(pred_class_logits, axis=2)
    # TODO: Update this line to work with batch > 1. Right now it assumes all
    #       images in a batch have the same active_class_ids
    pred_active = tf.gather(active_class_ids[0], pred_class_ids)

    # Loss
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=target_class_ids, logits=pred_class_logits)

    # Erase losses of predictions of classes that are not in the active
    # classes of the image.
    loss = loss * pred_active

    # Computer loss mean. Use only predictions that contribute
    # to the loss to get a correct mean.
    loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active)
    return loss


def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox):
    """Loss for Mask R-CNN bounding box refinement.

    target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))]
    target_class_ids: [batch, num_rois]. Integer class IDs.
    pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))]
    """
    # Reshape to merge batch and roi dimensions for simplicity.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    target_bbox = K.reshape(target_bbox, (-1, 4))
    pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4))

    # Only positive ROIs contribute to the loss. And only
    # the right class_id of each ROI. Get their indices.
    positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_roi_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_roi_ix), tf.int64)
    indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1)

    # Gather the deltas (predicted and true) that contribute to loss
    target_bbox = tf.gather(target_bbox, positive_roi_ix)
    pred_bbox = tf.gather_nd(pred_bbox, indices)

    # Smooth-L1 Loss
    loss = K.switch(tf.size(target_bbox) > 0,
                    smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss


def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):
    """Mask binary cross-entropy loss for the masks head.

    target_masks: [batch, num_rois, height, width].
        A float32 tensor of values 0 or 1. Uses zero padding to fill array.
    target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
    pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
                with values from 0 to 1.
    """
    # Reshape for simplicity. Merge first two dimensions into one.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    mask_shape = tf.shape(target_masks)
    target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))
    pred_shape = tf.shape(pred_masks)
    pred_masks = K.reshape(pred_masks,
                           (-1, pred_shape[2], pred_shape[3], pred_shape[4]))
    # Permute predicted masks to [N, num_classes, height, width]
    pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])

    # Only positive ROIs contribute to the loss. And only
    # the class specific mask of each ROI.
    positive_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_ix), tf.int64)
    indices = tf.stack([positive_ix, positive_class_ids], axis=1)

    # Gather the masks (predicted and true) that contribute to loss
    y_true = tf.gather(target_masks, positive_ix)
    y_pred = tf.gather_nd(pred_masks, indices)

    # Compute binary cross entropy. If no positive ROIs, then return 0.
    # shape: [batch, roi, num_classes]
    loss = K.switch(tf.size(y_true) > 0,
                    K.binary_crossentropy(target=y_true, output=y_pred),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss



############################################################
#  Data Generator
############################################################

def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
                  use_mini_mask=False):
    # 载入图片和语义分割效果
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    # print("\nbefore:",image_id,np.shape(mask),np.shape(class_ids))
    # 原始shape
    original_shape = image.shape
    # 获得新图片,原图片在新图片中的位置,变化的尺度,填充的情况等
    image, window, scale, padding, crop = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        min_scale=config.IMAGE_MIN_SCALE,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding, crop)
    # print("\nafter:",np.shape(mask),np.shape(class_ids))
    # print(np.shape(image),np.shape(mask))
    # 可以把图片进行翻转
    if augment:
        logging.warning("'augment' is deprecated. Use 'augmentation' instead.")
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    if augmentation:
        import imgaug
        # 可用于图像增强
        MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
                           "Fliplr", "Flipud", "CropAndPad",
                           "Affine", "PiecewiseAffine"]

        def hook(images, augmenter, parents, default):
            """Determines which augmenters to apply to masks."""
            return augmenter.__class__.__name__ in MASK_AUGMENTERS

        image_shape = image.shape
        mask_shape = mask.shape
        det = augmentation.to_deterministic()
        image = det.augment_image(image)
        mask = det.augment_image(mask.astype(np.uint8),
                                 hooks=imgaug.HooksImages(activator=hook))
        assert image.shape == image_shape, "Augmentation shouldn't change image size"
        assert mask.shape == mask_shape, "Augmentation shouldn't change mask size"
        mask = mask.astype(np.bool)
    # 检漏,防止某些层内部实际上不存在语义分割情况
    _idx = np.sum(mask, axis=(0, 1)) > 0
    
    # print("\nafterer:",np.shape(mask),np.shape(_idx))
    mask = mask[:, :, _idx]
    class_ids = class_ids[_idx]
    # 找到mask对应的box
    bbox = utils.extract_bboxes(mask)

    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1

    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # 生成Image_meta
    image_meta = utils.compose_image_meta(image_id, original_shape, image.shape,
                                    window, scale, active_class_ids)

    return image, image_meta, class_ids, bbox, mask



def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config):
    # 1代表正样本
    # -1代表负样本
    # 0代表忽略
    rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32)
    # 创建该部分内容利用先验框和真实框进行编码
    rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4))

    '''
    iscrowd=0的时候,表示这是一个单独的物体,轮廓用Polygon(多边形的点)表示,
    iscrowd=1的时候表示两个没有分开的物体,轮廓用RLE编码表示,比如说一张图片里面有三个人,
    一个人单独站一边,另外两个搂在一起(标注的时候距离太近分不开了),这个时候,
    单独的那个人的注释里面的iscrowing=0,segmentation用Polygon表示,
    而另外两个用放在同一个anatation的数组里面用一个segmention的RLE编码形式表示
    '''
    crowd_ix = np.where(gt_class_ids < 0)[0]
    if crowd_ix.shape[0] > 0:
        non_crowd_ix = np.where(gt_class_ids > 0)[0]
        crowd_boxes = gt_boxes[crowd_ix]
        gt_class_ids = gt_class_ids[non_crowd_ix]
        gt_boxes = gt_boxes[non_crowd_ix]
        crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes)
        crowd_iou_max = np.amax(crowd_overlaps, axis=1)
        no_crowd_bool = (crowd_iou_max < 0.001)
    else:
        no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool)

    # 计算先验框和真实框的重合程度 [num_anchors, num_gt_boxes]
    overlaps = utils.compute_overlaps(anchors, gt_boxes)

    # 1. 重合程度小于0.3则代表为负样本
    anchor_iou_argmax = np.argmax(overlaps, axis=1)
    anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]
    rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1
    # 2. 每个真实框重合度最大的先验框是正样本
    gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:,0]
    rpn_match[gt_iou_argmax] = 1
    # 3. 重合度大于0.7则代表为正样本
    rpn_match[anchor_iou_max >= 0.7] = 1

    # 正负样本平衡
    # 找到正样本的索引
    ids = np.where(rpn_match == 1)[0]
    # 如果大于(config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)则删掉一些
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)
    if extra > 0:
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0
    # 找到负样本的索引
    ids = np.where(rpn_match == -1)[0]
    # 使得总数为config.RPN_TRAIN_ANCHORS_PER_IMAGE
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE -
                        np.sum(rpn_match == 1))
    if extra > 0:
        # Rest the extra ones to neutral
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0

    # 找到内部真实存在物体的先验框,进行编码
    ids = np.where(rpn_match == 1)[0]
    ix = 0 
    for i, a in zip(ids, anchors[ids]):
        gt = gt_boxes[anchor_iou_argmax[i]]
        # 计算真实框的中心,高宽
        gt_h = gt[2] - gt[0]
        gt_w = gt[3] - gt[1]
        gt_center_y = gt[0] + 0.5 * gt_h
        gt_center_x = gt[1] + 0.5 * gt_w
        # 计算先验框中心,高宽
        a_h = a[2] - a[0]
        a_w = a[3] - a[1]
        a_center_y = a[0] + 0.5 * a_h
        a_center_x = a[1] + 0.5 * a_w
        # 编码运算
        rpn_bbox[ix] = [
            (gt_center_y - a_center_y) / a_h,
            (gt_center_x - a_center_x) / a_w,
            np.log(gt_h / a_h),
            np.log(gt_w / a_w),
        ]
        # 改变数量级
        rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV
        ix += 1

    return rpn_match, rpn_bbox




def data_generator(dataset, config, shuffle=True, augment=False, augmentation=None,
                   batch_size=1, detection_targets=False,
                   no_augmentation_sources=None):
    """
    inputs list:
    - images: [batch, H, W, C]
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
    - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
    - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs
    - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]
    - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width
                are those of the image unless use_mini_mask is True, in which
                case they are defined in MINI_MASK_SHAPE.

    outputs list: Usually empty in regular training. But if detection_targets
        is True then the outputs list contains target class_ids, bbox deltas,
        and masks.
    """
    b = 0  # batch item index
    image_index = -1
    image_ids = np.copy(dataset.image_ids)
    no_augmentation_sources = no_augmentation_sources or []

    # [anchor_count, (y1, x1, y2, x2)]
    # 计算获得先验框
    backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE)
    anchors = generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                             config.RPN_ANCHOR_RATIOS,
                                             backbone_shapes,
                                             config.BACKBONE_STRIDES,
                                             config.RPN_ANCHOR_STRIDE)

    while True:

        image_index = (image_index + 1) % len(image_ids)
        if shuffle and image_index == 0:
            np.random.shuffle(image_ids)

        # 获得id
        image_id = image_ids[image_index]

        # 获得图片,真实框,语义分割结果等
        if dataset.image_info[image_id]['source'] in no_augmentation_sources:
            image, image_meta, gt_class_ids, gt_boxes, gt_masks = \
            load_image_gt(dataset, config, image_id, augment=augment,
                            augmentation=None,
                            use_mini_mask=config.USE_MINI_MASK)
        else:
            image, image_meta, gt_class_ids, gt_boxes, gt_masks = \
                load_image_gt(dataset, config, image_id, augment=augment,
                            augmentation=augmentation,
                            use_mini_mask=config.USE_MINI_MASK)

        if not np.any(gt_class_ids > 0):
            continue

        # RPN Targets
        rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors,
                                                gt_class_ids, gt_boxes, config)

        # 如果某张图片里面物体的数量大于最大值的话,则进行筛选,防止过大
        if gt_boxes.shape[0] > config.MAX_GT_INSTANCES:
            ids = np.random.choice(
                np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False)
            gt_class_ids = gt_class_ids[ids]
            gt_boxes = gt_boxes[ids]
            gt_masks = gt_masks[:, :, ids]

        # 初始化用于训练的内容
        if b == 0:
            batch_image_meta = np.zeros(
                (batch_size,) + image_meta.shape, dtype=image_meta.dtype)
            batch_rpn_match = np.zeros(
                [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype)
            batch_rpn_bbox = np.zeros(
                [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype)
            batch_images = np.zeros(
                (batch_size,) + image.shape, dtype=np.float32)
            batch_gt_class_ids = np.zeros(
                (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32)
            batch_gt_boxes = np.zeros(
                (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32)
            batch_gt_masks = np.zeros(
                (batch_size, gt_masks.shape[0], gt_masks.shape[1],
                    config.MAX_GT_INSTANCES), dtype=gt_masks.dtype)
        # Add to batch
        batch_image_meta[b] = image_meta
        batch_rpn_match[b] = rpn_match[:, np.newaxis]
        batch_rpn_bbox[b] = rpn_bbox
        batch_images[b] = utils.mold_image(image.astype(np.float32), config)
        batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids
        batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes
        batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks

        b += 1
        
        # Batch full?
        if b >= batch_size:
            inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox,
                        batch_gt_class_ids, batch_gt_boxes, batch_gt_masks]
            outputs = []

            yield inputs, outputs

            # start a new batch
            b = 0
            


mrcnn.py

from keras.layers import Input,ZeroPadding2D,Conv2D,MaxPooling2D,BatchNormalization,Activation,UpSampling2D,Add,Lambda,Concatenate
from keras.layers import Reshape,TimeDistributed,Dense,Conv2DTranspose
from keras.models import Model
import keras.backend as K
from nets.resnet import get_resnet
from nets.layers import ProposalLayer,PyramidROIAlign,DetectionLayer,DetectionTargetLayer
from nets.mrcnn_training import *
from utils.anchors import get_anchors
from utils.utils import norm_boxes_graph,parse_image_meta_graph
import tensorflow as tf
import numpy as np

'''
TimeDistributed:
对FPN网络输出的多层卷积特征进行共享参数。
TimeDistributed的意义在于使不同层的特征图共享权重。
'''
#------------------------------------#
#   五个不同大小的特征层会传入到
#   RPN当中,获得建议框
#------------------------------------#
def rpn_graph(feature_map, anchors_per_location):
    
    shared = Conv2D(512, (3, 3), padding='same', activation='relu',
                       name='rpn_conv_shared')(feature_map)
    
    x = Conv2D(2 * anchors_per_location, (1, 1), padding='valid',
                  activation='linear', name='rpn_class_raw')(shared)
    # batch_size,num_anchors,2
    # 代表这个先验框对应的类
    rpn_class_logits = Reshape([-1,2])(x)

    rpn_probs = Activation(
        "softmax", name="rpn_class_xxx")(rpn_class_logits)
    
    x = Conv2D(anchors_per_location * 4, (1, 1), padding="valid",
                  activation='linear', name='rpn_bbox_pred')(shared)
    # batch_size,num_anchors,4
    # 这个先验框的调整参数
    rpn_bbox = Reshape([-1,4])(x)

    return [rpn_class_logits, rpn_probs, rpn_bbox]

#------------------------------------#
#   建立建议框网络模型
#   RPN模型
#------------------------------------#
def build_rpn_model(anchors_per_location, depth):
    input_feature_map = Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location)
    return Model([input_feature_map], outputs, name="rpn_model")


#------------------------------------#
#   建立classifier模型
#   这个模型的预测结果会调整建议框
#   获得最终的预测框
#------------------------------------#
def fpn_classifier_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True,
                         fc_layers_size=1024):
    # ROI Pooling,利用建议框在特征层上进行截取
    # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_classifier")([rois, image_meta] + feature_maps)

    # Shape: [batch, num_rois, 1, 1, fc_layers_size],相当于两次全连接
    x = TimeDistributed(Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"),
                           name="mrcnn_class_conv1")(x)
    x = TimeDistributed(BatchNormalization(), name='mrcnn_class_bn1')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, 1, 1, fc_layers_size]
    x = TimeDistributed(Conv2D(fc_layers_size, (1, 1)),
                           name="mrcnn_class_conv2")(x)
    x = TimeDistributed(BatchNormalization(), name='mrcnn_class_bn2')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, fc_layers_size]
    shared = Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                       name="pool_squeeze")(x)

    # Classifier head
    # 这个的预测结果代表这个先验框内部的物体的种类
    mrcnn_class_logits = TimeDistributed(Dense(num_classes),
                                            name='mrcnn_class_logits')(shared)
    mrcnn_probs = TimeDistributed(Activation("softmax"),
                                     name="mrcnn_class")(mrcnn_class_logits)


    # BBox head
    # 这个的预测结果会对先验框进行调整
    # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))]
    x = TimeDistributed(Dense(num_classes * 4, activation='linear'),
                           name='mrcnn_bbox_fc')(shared)
    # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
    mrcnn_bbox = Reshape((-1, num_classes, 4), name="mrcnn_bbox")(x)

    return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox



def build_fpn_mask_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
    # ROI Align,利用建议框在特征层上进行截取
    # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_mask")([rois, image_meta] + feature_maps)

    # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]
    x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv1")(x)
    x = TimeDistributed(BatchNormalization(),
                           name='mrcnn_mask_bn1')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]
    x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv2")(x)
    x = TimeDistributed(BatchNormalization(),
                           name='mrcnn_mask_bn2')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]
    x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv3")(x)
    x = TimeDistributed(BatchNormalization(),
                           name='mrcnn_mask_bn3')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels]
    x = TimeDistributed(Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv4")(x)
    x = TimeDistributed(BatchNormalization(),
                           name='mrcnn_mask_bn4')(x, training=train_bn)
    x = Activation('relu')(x)

    # Shape: [batch, num_rois, 2xMASK_POOL_SIZE, 2xMASK_POOL_SIZE, channels]
    x = TimeDistributed(Conv2DTranspose(256, (2, 2), strides=2, activation="relu"),
                           name="mrcnn_mask_deconv")(x)
    # 反卷积后再次进行一个1x1卷积调整通道,使其最终数量为numclasses,代表分的类
    x = TimeDistributed(Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
                           name="mrcnn_mask")(x)
    return x



def get_predict_model(config):
    h, w = config.IMAGE_SHAPE[:2]
    if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
        raise Exception("Image size must be dividable by 2 at least 6 times "
                        "to avoid fractions when downscaling and upscaling."
                        "For example, use 256, 320, 384, 448, 512, ... etc. ")
    
    # 输入进来的图片必须是2的6次方以上的倍数
    input_image = Input(shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
    # meta包含了一些必要信息
    input_image_meta = Input(shape=[config.IMAGE_META_SIZE],name="input_image_meta")
    # 输入进来的先验框
    input_anchors = Input(shape=[None, 4], name="input_anchors")


    # 获得Resnet里的压缩程度不同的一些层
    _, C2, C3, C4, C5 = get_resnet(input_image, stage5=True, train_bn=config.TRAIN_BN)

    # 组合成特征金字塔的结构
    # P5长宽共压缩了5次
    # Height/32,Width/32,256
    P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)
    # P4长宽共压缩了4次
    # Height/16,Width/16,256
    P4 = Add(name="fpn_p4add")([
        UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
    # P4长宽共压缩了3次
    # Height/8,Width/8,256
    P3 = Add(name="fpn_p3add")([
        UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
    # P4长宽共压缩了2次
    # Height/4,Width/4,256
    P2 = Add(name="fpn_p2add")([
        UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
        
    # 各自进行一次256通道的卷积,此时P2、P3、P4、P5通道数相同
    # Height/4,Width/4,256
    P2 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
    # Height/8,Width/8,256
    P3 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
    # Height/16,Width/16,256
    P4 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
    # Height/32,Width/32,256
    P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
    # 在建议框网络里面还有一个P6用于获取建议框
    # Height/64,Width/64,256
    P6 = MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)

    # P2, P3, P4, P5, P6可以用于获取建议框
    rpn_feature_maps = [P2, P3, P4, P5, P6]
    # P2, P3, P4, P5用于获取mask信息
    mrcnn_feature_maps = [P2, P3, P4, P5]

    anchors = input_anchors
    # 建立RPN模型
    rpn = build_rpn_model(len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)

    rpn_class_logits, rpn_class, rpn_bbox = [],[],[]

    # 获得RPN网络的预测结果,进行格式调整,把五个特征层的结果进行堆叠
    for p in rpn_feature_maps:
        logits,classes,bbox = rpn([p])
        rpn_class_logits.append(logits)
        rpn_class.append(classes)
        rpn_bbox.append(bbox)

    rpn_class_logits = Concatenate(axis=1,name="rpn_class_logits")(rpn_class_logits)
    rpn_class = Concatenate(axis=1,name="rpn_class")(rpn_class)
    rpn_bbox = Concatenate(axis=1,name="rpn_bbox")(rpn_bbox)

    # 此时获得的rpn_class_logits、rpn_class、rpn_bbox的维度是
    # rpn_class_logits : Batch_size, num_anchors, 2
    # rpn_class : Batch_size, num_anchors, 2
    # rpn_bbox : Batch_size, num_anchors, 4
    proposal_count = config.POST_NMS_ROIS_INFERENCE

    # Batch_size, proposal_count, 4
    # 对先验框进行解码
    rpn_rois = ProposalLayer(
            proposal_count=proposal_count,
            nms_threshold=config.RPN_NMS_THRESHOLD,
            name="ROI",
            config=config)([rpn_class, rpn_bbox, anchors])

    # 获得classifier的结果
    mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
        fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                config.POOL_SIZE, config.NUM_CLASSES,
                                train_bn=config.TRAIN_BN,
                                fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    
    detections = DetectionLayer(config, name="mrcnn_detection")(
                    [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])
                
                
    detection_boxes = Lambda(lambda x: x[..., :4])(detections)
    # 获得mask的结果
    mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                    input_image_meta,
                                    config.MASK_POOL_SIZE,
                                    config.NUM_CLASSES,
                                    train_bn=config.TRAIN_BN)

    # 作为输出
    model = Model([input_image, input_image_meta, input_anchors],
                        [detections, mrcnn_class, mrcnn_bbox,
                            mrcnn_mask, rpn_rois, rpn_class, rpn_bbox],
                        name='mask_rcnn')
    return model

def get_train_model(config):
    h, w = config.IMAGE_SHAPE[:2]
    if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
        raise Exception("Image size must be dividable by 2 at least 6 times "
                        "to avoid fractions when downscaling and upscaling."
                        "For example, use 256, 320, 384, 448, 512, ... etc. ")

    # 输入进来的图片必须是2的6次方以上的倍数
    input_image = Input(shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
    # meta包含了一些必要信息
    input_image_meta = Input(shape=[config.IMAGE_META_SIZE],name="input_image_meta")

    # RPN建议框网络的真实框信息
    input_rpn_match = Input(
        shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
    input_rpn_bbox = Input(
        shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)

    # 种类信息
    input_gt_class_ids = Input(shape=[None], name="input_gt_class_ids", dtype=tf.int32)

    # 框的位置信息
    input_gt_boxes = Input(shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)

    # 标准化到0-1之间
    gt_boxes = Lambda(lambda x: norm_boxes_graph(x, K.shape(input_image)[1:3]))(input_gt_boxes)

    # mask语义分析信息
    # [batch, height, width, MAX_GT_INSTANCES]
    if config.USE_MINI_MASK:
        input_gt_masks = Input(shape=[config.MINI_MASK_SHAPE[0],config.MINI_MASK_SHAPE[1], None],name="input_gt_masks", dtype=bool)
    else:
        input_gt_masks = Input(shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],name="input_gt_masks", dtype=bool)

    # 获得Resnet里的压缩程度不同的一些层
    _, C2, C3, C4, C5 = get_resnet(input_image, stage5=True, train_bn=config.TRAIN_BN)

    # 组合成特征金字塔的结构
    # P5长宽共压缩了5次
    # Height/32,Width/32,256
    P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)
    # P4长宽共压缩了4次
    # Height/16,Width/16,256
    P4 = Add(name="fpn_p4add")([
        UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
    # P4长宽共压缩了3次
    # Height/8,Width/8,256
    P3 = Add(name="fpn_p3add")([
        UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
    # P4长宽共压缩了2次
    # Height/4,Width/4,256
    P2 = Add(name="fpn_p2add")([
        UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
        Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
        
    # 各自进行一次256通道的卷积,此时P2、P3、P4、P5通道数相同
    # Height/4,Width/4,256
    P2 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
    # Height/8,Width/8,256
    P3 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
    # Height/16,Width/16,256
    P4 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
    # Height/32,Width/32,256
    P5 = Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
    # 在建议框网络里面还有一个P6用于获取建议框
    # Height/64,Width/64,256
    P6 = MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)

    # P2, P3, P4, P5, P6可以用于获取建议框
    rpn_feature_maps = [P2, P3, P4, P5, P6]
    # P2, P3, P4, P5用于获取mask信息
    mrcnn_feature_maps = [P2, P3, P4, P5]

    
    anchors = get_anchors(config,config.IMAGE_SHAPE)
    # 拓展anchors的shape,第一个维度拓展为batch_size
    anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
    # 将anchors转化成tensor的形式
    anchors = Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)
    # 建立RPN模型
    rpn = build_rpn_model(len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)

    rpn_class_logits, rpn_class, rpn_bbox = [],[],[]

    # 获得RPN网络的预测结果,进行格式调整,把五个特征层的结果进行堆叠
    for p in rpn_feature_maps:
        logits,classes,bbox = rpn([p])
        rpn_class_logits.append(logits)
        rpn_class.append(classes)
        rpn_bbox.append(bbox)

    rpn_class_logits = Concatenate(axis=1,name="rpn_class_logits")(rpn_class_logits)
    rpn_class = Concatenate(axis=1,name="rpn_class")(rpn_class)
    rpn_bbox = Concatenate(axis=1,name="rpn_bbox")(rpn_bbox)

    # 此时获得的rpn_class_logits、rpn_class、rpn_bbox的维度是
    # rpn_class_logits : Batch_size, num_anchors, 2
    # rpn_class : Batch_size, num_anchors, 2
    # rpn_bbox : Batch_size, num_anchors, 4
    proposal_count = config.POST_NMS_ROIS_TRAINING

    # Batch_size, proposal_count, 4
    rpn_rois = ProposalLayer(
            proposal_count=proposal_count,
            nms_threshold=config.RPN_NMS_THRESHOLD,
            name="ROI",
            config=config)([rpn_class, rpn_bbox, anchors])

    active_class_ids = Lambda(
        lambda x: parse_image_meta_graph(x)["active_class_ids"]
        )(input_image_meta)

    if not config.USE_RPN_ROIS:
        # 使用外部输入的建议框
        input_rois = Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                name="input_roi", dtype=np.int32)
        # Normalize coordinates
        target_rois = Lambda(lambda x: norm_boxes_graph(
            x, K.shape(input_image)[1:3]))(input_rois)
    else:
        # 利用预测到的建议框进行下一步的操作
        target_rois = rpn_rois

    """找到建议框的ground_truth
    Inputs:
    proposals: [batch, N, (y1, x1, y2, x2)]建议框
    gt_class_ids: [batch, MAX_GT_INSTANCES]每个真实框对应的类
    gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]真实框的位置
    gt_masks: [batch, height, width, MAX_GT_INSTANCES]真实框的语义分割情况

    Returns: 
    rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]内部真实存在目标的建议框
    target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]每个建议框对应的类
    target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)]每个建议框应该有的调整参数
    target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width]每个建议框语义分割情况
    """
    rois, target_class_ids, target_bbox, target_mask =\
        DetectionTargetLayer(config, name="proposal_targets")([
            target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])

    # 找到合适的建议框的classifier预测结果
    mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
        fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
                                config.POOL_SIZE, config.NUM_CLASSES,
                                train_bn=config.TRAIN_BN,
                                fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    # 找到合适的建议框的mask预测结果
    mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                        input_image_meta,
                                        config.MASK_POOL_SIZE,
                                        config.NUM_CLASSES,
                                        train_bn=config.TRAIN_BN)

    output_rois = Lambda(lambda x: x * 1, name="output_rois")(rois)

    # Losses
    rpn_class_loss = Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
        [input_rpn_match, rpn_class_logits])
    rpn_bbox_loss = Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
        [input_rpn_bbox, input_rpn_match, rpn_bbox])
    class_loss = Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
        [target_class_ids, mrcnn_class_logits, active_class_ids])
    bbox_loss = Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
        [target_bbox, target_class_ids, mrcnn_bbox])
    mask_loss = Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
        [target_mask, target_class_ids, mrcnn_mask])

    # Model
    inputs = [input_image, input_image_meta,
                input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
                
    if not config.USE_RPN_ROIS:
        inputs.append(input_rois)
    outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                rpn_rois, output_rois,
                rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
    model = Model(inputs, outputs, name='mask_rcnn')
    return model

resnet.py

from keras.layers import ZeroPadding2D,Conv2D,MaxPooling2D,BatchNormalization,Activation,Add

def identity_block(input_tensor, kernel_size, filters, stage, block,
                   use_bias=True, train_bn=True):
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',
                  use_bias=use_bias)(input_tensor)
    x = BatchNormalization(name=bn_name_base + '2a')(x, training=train_bn)
    x = Activation('relu')(x)

    x = Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNormalization(name=bn_name_base + '2b')(x, training=train_bn)
    x = Activation('relu')(x)

    x = Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',
                  use_bias=use_bias)(x)
    x = BatchNormalization(name=bn_name_base + '2c')(x, training=train_bn)

    x = Add()([x, input_tensor])
    x = Activation('relu', name='res' + str(stage) + block + '_out')(x)
    return x

def conv_block(input_tensor, kernel_size, filters, stage, block,
               strides=(2, 2), use_bias=True, train_bn=True):

    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = Conv2D(nb_filter1, (1, 1), strides=strides,
                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
    x = BatchNormalization(name=bn_name_base + '2a')(x, training=train_bn)
    x = Activation('relu')(x)

    x = Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNormalization(name=bn_name_base + '2b')(x, training=train_bn)
    x = Activation('relu')(x)

    x = Conv2D(nb_filter3, (1, 1), name=conv_name_base +
                  '2c', use_bias=use_bias)(x)
    x = BatchNormalization(name=bn_name_base + '2c')(x, training=train_bn)

    shortcut = Conv2D(nb_filter3, (1, 1), strides=strides,
                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
    shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut, training=train_bn)

    x = Add()([x, shortcut])
    x = Activation('relu', name='res' + str(stage) + block + '_out')(x)
    return x

def get_resnet(input_image,stage5=False, train_bn=True):
    # Stage 1
    x = ZeroPadding2D((3, 3))(input_image)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNormalization(name='bn_conv1')(x, training=train_bn)
    x = Activation('relu')(x)
    # Height/4,Width/4,64
    C1 = x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
    # Height/4,Width/4,256
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
    # Height/8,Width/8,512
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
    block_count = 22
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
    # Height/16,Width/16,1024
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
        # Height/32,Width/32,2048
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]

5.2 mask_rcnn.py

import os
import sys
import random
import math
import numpy as np
import skimage.io
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
from nets.mrcnn import get_predict_model
from utils.config import Config
from utils.anchors import get_anchors
from utils.utils import mold_inputs,unmold_detections
from utils import visualize
import keras.backend as K
class MASK_RCNN(object):
    _defaults = {
        "model_path": 'model_data/mask_rcnn_coco.h5',
        "classes_path": 'model_data/coco_classes.txt',
        "confidence": 0.7,

        # 使用coco数据集检测的时候,IMAGE_MIN_DIM=1024,IMAGE_MAX_DIM=1024, RPN_ANCHOR_SCALES=(32, 64, 128, 256, 512)
        "RPN_ANCHOR_SCALES": (32, 64, 128, 256, 512),
        "IMAGE_MIN_DIM": 1024,
        "IMAGE_MAX_DIM": 1024,
        
        # 在使用自己的数据集进行训练的时候,如果显存不足要调小图片大小
        # 同时要调小anchors
        #"IMAGE_MIN_DIM": 512,
        #"IMAGE_MAX_DIM": 512,
        #"RPN_ANCHOR_SCALES": (16, 32, 64, 128, 256)
    }

    @classmethod
    def get_defaults(cls, n):
        if n in cls._defaults:
            return cls._defaults[n]
        else:
            return "Unrecognized attribute name '" + n + "'"

    #---------------------------------------------------#
    #   初始化Mask-Rcnn
    #---------------------------------------------------#
    def __init__(self, **kwargs):
        self.__dict__.update(self._defaults)
        self.class_names = self._get_class()
        self.sess = K.get_session()
        self.config = self._get_config()
        self.generate()
    #---------------------------------------------------#
    #   获得所有的分类
    #---------------------------------------------------#
    def _get_class(self):
        classes_path = os.path.expanduser(self.classes_path)
        with open(classes_path) as f:
            class_names = f.readlines()
        class_names = [c.strip() for c in class_names]
        class_names.insert(0,"BG")
        return class_names

    def _get_config(self):
        class InferenceConfig(Config):
            NUM_CLASSES = len(self.class_names)
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = self.confidence
            
            NAME = "shapes"
            RPN_ANCHOR_SCALES = self.RPN_ANCHOR_SCALES
            IMAGE_MIN_DIM = self.IMAGE_MIN_DIM
            IMAGE_MAX_DIM = self.IMAGE_MAX_DIM

        config = InferenceConfig()
        config.display()
        return config

    #---------------------------------------------------#
    #   生成模型
    #---------------------------------------------------#
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
        
        # 计算总的种类
        self.num_classes = len(self.class_names)

        # 载入模型,如果原来的模型里已经包括了模型结构则直接载入。
        # 否则先构建模型再载入
        self.model = get_predict_model(self.config)
        self.model.load_weights(self.model_path,by_name=True)
    
    #---------------------------------------------------#
    #   检测图片
    #---------------------------------------------------#
    def detect_image(self, image):
        image = [np.array(image)]
        molded_images, image_metas, windows = mold_inputs(self.config,image)

        image_shape = molded_images[0].shape
        anchors = get_anchors(self.config,image_shape)
        anchors = np.broadcast_to(anchors, (1,) + anchors.shape)

        detections, _, _, mrcnn_mask, _, _, _ =\
            self.model.predict([molded_images, image_metas, anchors], verbose=0)

        final_rois, final_class_ids, final_scores, final_masks =\
            unmold_detections(detections[0], mrcnn_mask[0],
                                    image[0].shape, molded_images[0].shape,
                                    windows[0])

        r = {
            "rois": final_rois,
            "class_ids": final_class_ids,
            "scores": final_scores,
            "masks": final_masks,
        }

        visualize.display_instances(image[0], r['rois'], r['masks'], r['class_ids'], 
                                    self.class_names, r['scores'])
    def close_session(self):
        self.sess.close()

5.3 train.py

import os
from PIL import Image
import keras
import numpy as np
import random

import tensorflow as tf
from utils import visualize
from utils.config import Config
from utils.anchors import get_anchors
from utils.utils import mold_inputs,unmold_detections
from nets.mrcnn import get_train_model,get_predict_model
from nets.mrcnn_training import data_generator,load_image_gt
from dataset import ShapesDataset

def log(text, array=None):
    """Prints a text message. And, optionally, if a Numpy array is provided it
    prints it's shape, min, and max values.
    """
    if array is not None:
        text = text.ljust(25)
        text += ("shape: {:20}  ".format(str(array.shape)))
        if array.size:
            text += ("min: {:10.5f}  max: {:10.5f}".format(array.min(),array.max()))
        else:
            text += ("min: {:10}  max: {:10}".format("",""))
        text += "  {}".format(array.dtype)
    print(text)

class ShapesConfig(Config):
    NAME = "shapes"
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1
    BATCH_SIZE = 1
    NUM_CLASSES = 1 + 3
    RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256)
    IMAGE_MIN_DIM = 512
    IMAGE_MAX_DIM = 512

    STEPS_PER_EPOCH = 250
    VALIDATION_STEPS = 25

if __name__ == "__main__":
    learning_rate = 1e-5
    init_epoch = 0
    epoch = 100

    dataset_root_path="./train_dataset/"
    img_floder = dataset_root_path + "imgs/"
    mask_floder = dataset_root_path + "mask/"
    yaml_floder = dataset_root_path + "yaml/"
    imglist = os.listdir(img_floder)

    count = len(imglist)
    np.random.seed(10101)
    np.random.shuffle(imglist)
    train_imglist = imglist[:int(count*0.9)]
    val_imglist = imglist[int(count*0.9):]

    MODEL_DIR = "logs"

    COCO_MODEL_PATH = "model_data/mask_rcnn_coco.h5"
    config = ShapesConfig()
    config.display()

    # 训练数据集准备
    dataset_train = ShapesDataset()
    dataset_train.load_shapes(len(train_imglist), img_floder, mask_floder, train_imglist, yaml_floder)
    dataset_train.prepare()

    # 验证数据集准备
    dataset_val = ShapesDataset()
    dataset_val.load_shapes(len(val_imglist), img_floder, mask_floder, val_imglist, yaml_floder)
    dataset_val.prepare()

    # 获得训练模型
    model = get_train_model(config)
    model.load_weights(COCO_MODEL_PATH,by_name=True,skip_mismatch=True)

    # 数据生成器
    train_generator = data_generator(dataset_train, config, shuffle=True,
                                        batch_size=config.BATCH_SIZE)
    val_generator = data_generator(dataset_val, config, shuffle=True,
                                    batch_size=config.BATCH_SIZE)

    # 回执函数
    # 每次训练一个世代都会保存
    callbacks = [
        keras.callbacks.TensorBoard(log_dir=MODEL_DIR,
                                    histogram_freq=0, write_graph=True, write_images=False),
        keras.callbacks.ModelCheckpoint(os.path.join(MODEL_DIR, "epoch{epoch:03d}_loss{loss:.3f}_val_loss{val_loss:.3f}.h5"),
                                        verbose=0, save_weights_only=True),
    ]

    log("\nStarting at epoch {}. LR={}\n".format(init_epoch, learning_rate))
    log("Checkpoint Path: {}".format(MODEL_DIR))

    # 使用的优化器是
    optimizer = keras.optimizers.Adam(lr=learning_rate)

    # 设置一下loss信息
    model._losses = []
    model._per_input_losses = {}
    loss_names = [
        "rpn_class_loss",  "rpn_bbox_loss",
        "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]
    for name in loss_names:
        layer = model.get_layer(name)
        if layer.output in model.losses:
            continue
        loss = (
            tf.reduce_mean(layer.output, keepdims=True)
            * config.LOSS_WEIGHTS.get(name, 1.))
        model.add_loss(loss)

    # 增加L2正则化,放置过拟合
    reg_losses = [
        keras.regularizers.l2(config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)
        for w in model.trainable_weights
        if 'gamma' not in w.name and 'beta' not in w.name]
    model.add_loss(tf.add_n(reg_losses))

    # 进行编译
    model.compile(
        optimizer=optimizer,
        loss=[None] * len(model.outputs)
    )

    # 用于显示训练情况
    for name in loss_names:
        if name in model.metrics_names:
            print(name)
            continue
        layer = model.get_layer(name)
        model.metrics_names.append(name)
        loss = (
            tf.reduce_mean(layer.output, keepdims=True)
            * config.LOSS_WEIGHTS.get(name, 1.))
        model.metrics_tensors.append(loss)


    model.fit_generator(
        train_generator,
        initial_epoch=init_epoch,
        epochs=epoch,
        steps_per_epoch=config.STEPS_PER_EPOCH,
        callbacks=callbacks,
        validation_data=val_generator,
        validation_steps=config.VALIDATION_STEPS,
        max_queue_size=100
    )



5.4 predict.py

from keras.layers import Input
from mask_rcnn import MASK_RCNN 
from PIL import Image

mask_rcnn = MASK_RCNN()

while True:
    img = input('img/street.jpg')
    try:
        image = Image.open('img/street.jpg')
    except:
        print('Open Error! Try again!')
        continue
    else:
        mask_rcnn.detect_image(image)
mask_rcnn.close_session()
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/86187.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

常用的Selenium基础使用模板和简单封装

前言 近来又用上了 Selneium &#xff0c;因为反复用到&#xff0c;所以在这里将一些常用的方法封装起来&#xff0c;方便后续的使用。 在这篇文章中&#xff0c;我们将探讨 Selenium 的基础模板和基础封装&#xff0c;以便更好地理解 Selenium 的使用方法。 在Selenium的使…

web---Vue2_语法学习

文章目录 1、Vue2 常用指令1.1 初始Vue1.2 Vue的两种模板语法1.3 数据绑定1.4 el和data的两种写法1.5 MVVM模型1.6 Vue中的数据代理1.7 事件处理--事件的基本使用1.7 事件处理--事件修饰符1.7 事件处理--键盘事件1.8 计算属性1.9 监视属性1.9 深度监视2.0 绑定css样式2.1 条件渲…

spring复习:(57)PropertyOverrideConfigurer用法及工作原理

一、属性配置文件 dataSource.urljdbc:mysql://xxx.xxx.xxx.xxx/test dataSource.usernameroot dataSource.passwordxxxxxx dataSource.driverClassNamecom.mysql.jdbc.Driver #dataSource.typecom.alibaba.druid.pool.DruidDataSource二、spring配置文件 <?xml version&…

NPM 管理组织成员

目录 1、向组织添加成员 1.1 邀请成员加入您的组织 1.2 撤销组织邀请 2、接收或拒接组织邀请 2.1 接收组织邀请 2.2 拒绝组织邀请 3、组织角色和权限 4、管理组织权限 5、从组织中删除成员 1、向组织添加成员 作为组织所有者&#xff0c;您可以将其他npm用户添加到…

[保研/考研机试] KY212 二叉树遍历 华中科技大学复试上机题 C++实现

题目链接&#xff1a; 二叉树遍历_牛客题霸_牛客网二叉树的前序、中序、后序遍历的定义&#xff1a; 前序遍历&#xff1a;对任一子树&#xff0c;先访问根&#xff0c;然后遍历其左子树&#xff0c;最。题目来自【牛客题霸】https://www.nowcoder.com/share/jump/43719512169…

【仿写tomcat】六、解析xml文件配置端口、线程池核心参数

线程池改造 上一篇文章中我们用了Excutors创建了线程&#xff0c;这里我们将它改造成包含所有线程池核心参数的形式。 package com.tomcatServer.http;import java.util.concurrent.*;/*** 线程池跑龙套** author ez4sterben* date 2023/08/05*/ public class ThreadPool {pr…

php 系列题目,包含查看后端源代码

一、弱类型比较问题 原则&#xff1a; 1.字符串和数字比较&#xff0c;字符串回被转换成数字。 "admin" 0&#xff08;true) admin被转换成数字&#xff0c;由于admin是字符串&#xff0c;转换失败&#xff0c;变成0 int(admin)0,所以比较结果是ture 2.混合字符串转…

RabbitMq的使用

最近处理访客记录所以&#xff0c;来学习下rabbitMQ。之前同事已经写好了&#xff0c;这里只需要进行消费&#xff0c;后续会逐渐完善。 0.介绍 0.1交换机&#xff08;Exchanges&#xff09; rabbitmq中生产者发送的消息都是发送到交换机&#xff0c;再由交换机推入队列。所…

百度云BOS云存储的图片如何在访问时,同时进行格式转换、缩放等处理

前言 之前做了一个图片格式转换和压缩的服务&#xff0c;结果太占内存。后来查到在访问图片链接时&#xff0c;支持进行图片压缩和格式转换&#xff0c;本来想着先格式转换、压缩图片再上传到BOS&#xff0c;现在变成了上传后&#xff0c;访问时进行压缩和格式转换。想了想&am…

无人机航管应答机 ping200XR

产品概述 ping200XR是一个完整的系统&#xff0c;旨在满足航管应答器和自动相关监视广播(ADS-B)的要求&#xff0c;在管制空域操作无人航空系统(UAS)。该系统完全可配置为模式A&#xff0c;模式C&#xff0c;模式S转发器和扩展ADS-B发射机的任何组合。ping200XR包括一个精度超…

AutoDev 1.1.3 登场,个性化 AI 辅助:私有化大模型、自主设计 prompt、定义独特规则...

在过去的半个月里&#xff0c;我们为开源辅助编程工具 AutoDev 添加了更强大的自定义能力&#xff0c;现在你可以&#xff1a; 使用自己部署的开源大模型自己配置 Intellij IDEA 中的行为自定义开发过程中的规范 当然了&#xff0c;如果您自身拥有开发能力的话&#xff0c;建议…

MinIO线上扩容实战

硬件投入肯定是随着业务的增长而增长&#xff0c;这就要求中间件平台必须提供水平伸缩机制&#xff0c;MinIO对象存储服务也不例外&#xff0c;本文就详细介绍MinIO的扩容。 Minio支持通过增加新的Server Pool来扩容老的集群。每个Server Pool都是一个相对独立的故障域&#x…

uniapp微信小程序点击右上角菜单分享功能权限配置

个人项目地址&#xff1a; SubTopH前端开发个人站 &#xff08;自己开发的前端功能和UI组件&#xff0c;一些有趣的小功能&#xff0c;感兴趣的伙伴可以访问&#xff0c;欢迎提出更好的想法&#xff0c;私信沟通&#xff0c;网站属于静态页面&#xff09; SubTopH前端开发个人站…

IPv4,IPv6,TCP,路由

主要回顾一下TCP&#xff0f;IP的传输过程&#xff0c;在这个过程中&#xff0c;做了什么事情 ip : 网际协议,IP协议能让世界上任意两台计算机之间进行通信。 IP协议的三大功能&#xff1a; 寻址和路由传递服务&#xff1a;不可靠&#xff08;尽最大努力交付传输数据包&…

Kali 分析和管理网络

查看网络 ifconfig 命令 ┌──(root㉿kali)-[~] # eth0:有线网卡 └─# ifconfig eth0: flags4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500inet 192.168.56.128 netmask 255.255.255.0 broadcast 192.168.56.255inet6 fe80::20c:29ff:feb3:7991 prefixlen 64 …

C++信息学奥赛1131:基因相关性

这段代码的功能是比较两个字符串的相似度&#xff0c;并根据给定的阈值判断是否相似。 解析注释后的代码如下&#xff1a; #include <iostream> #include <string> using namespace std;int main() {double bf; // 定义双精度浮点数变量bf&#xff0c;用于存储阈…

LED驱动型IC芯片的原理介绍

一、LED驱动器是什么 LED驱动器&#xff08;LED Driver&#xff09;&#xff0c;是指驱动LED发光或LED模块组件正常工作的电源调整电子器件。由于LED PN结的导通特性决定&#xff0c;它能适应的电源电压和电流变动范围十分狭窄&#xff0c;稍许偏离就可能无法点亮LED或者发光效…

10种最流行的3D模型文件格式及转换方法

3D 文件格式用于存储有关 3D 模型的信息。 你可能听说过一些最流行的格式&#xff0c;包括 STL、OBJ、FBX 和 DAE。 它们广泛应用于从视频游戏动画到工业增材制造的各种应用中。 在本文中&#xff0c;我们将考虑为什么有这么多不同的格式&#xff0c;探讨 3D 文件格式存储的四…

Code Lab - 2

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.10.2cu102.html pip install torch-geometric pip install ogb 1. PyG Datasets PyG有两个类&#xff0c;用…

学Python静不下来,看了一堆资料还是很迷茫是为什么

一、前言 最近发现&#xff0c;身边很多的小伙伴学Python都会遇到一个问题&#xff0c;就是资料也看了很多&#xff0c;也花了很多时间去学习但还是很迷茫&#xff0c;时间长了又发现之前学的知识点很多都忘了&#xff0c;都萌生出了想半路放弃的想法。 让我们看看蚂蚁金服的大…