机器学习笔记之优化算法(十五)Baillon Haddad Theorem简单认识

引言

本节将简单认识 Baillon Haddad Theorem \text{Baillon Haddad Theorem} Baillon Haddad Theorem(白老爹定理),并提供相关证明。

Baillon Haddad Theorem \text{Baillon Haddad Theorem} Baillon Haddad Theorem简单认识

如果函数 f ( ⋅ ) f(\cdot) f()在其定义域内可微,并且是凸函数,则存在如下等价条件
以下几个条件之间相互等价。

  • 关于 f ( ⋅ ) f(\cdot) f()梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足 L \mathcal L L-利普希兹连续
    { ∀ x , x ^ ∈ R n , ∃ L : s . t . ∣ ∣ f ( x ) − f ( x ^ ) ∣ ∣ ≤ L ⋅ ∣ ∣ x − x ^ ∣ ∣ ∃ ξ ∈ ( x , x ^ ) ⇒ ∣ ∣ f ( x ) − f ( x ^ ) ∣ ∣ ∣ ∣ x − x ^ ∣ ∣ = f ′ ( ξ ) ≤ L \begin{cases} \forall x,\hat x \in \mathbb R^n ,\exist \mathcal L: \quad s.t.||f(x) - f(\hat x)|| \leq \mathcal L \cdot ||x - \hat x|| \\ \quad \\ \begin{aligned} \exist \xi \in (x,\hat x) \Rightarrow \frac{||f(x) - f(\hat x)||}{||x - \hat x||} = f'(\xi) \leq \mathcal L \end{aligned} \end{cases} x,x^Rn,L:s.t.∣∣f(x)f(x^)∣∣L∣∣xx^∣∣ξ(x,x^)∣∣xx^∣∣∣∣f(x)f(x^)∣∣=f(ξ)L
    关于利普希兹连续详见二次上界引理。从逻辑的角度理解,这意味着:函数 f ( ⋅ ) f(\cdot) f()斜率的变化量利普希兹常数 L \mathcal L L约束。从图像的角度模糊观察,由于 L \mathcal L L的限制,不会出现斜率过于陡峭的情况
    见下图。从 x ⇒ y x \Rightarrow y xy的过程中, ∇ f ( x ) ⇒ ∇ f ( y ) \nabla f(x) \Rightarrow \nabla f(y) f(x)f(y)发生了剧烈的变化。这本质上说明 f ( ⋅ ) f(\cdot) f() [ x , y ] [x,y] [x,y]区间内过于陡峭的原因。
    斜率过大的情况

  • 关于函数 G ( x ) = L 2 x T x − f ( x ) \begin{aligned}\mathcal G(x) = \frac{\mathcal L}{2} x^T x - f(x)\end{aligned} G(x)=2LxTxf(x)同样是凸函数

    观察 G ( x ) \mathcal G(x) G(x),可以发现它由两部分组成:系数是 L 2 \begin{aligned}\frac{\mathcal L}{2}\end{aligned} 2L,关于变量 x x x的二次项结果;以及 f ( x ) f(x) f(x)自身。而二次函数 L 2 x T x \begin{aligned}\frac{\mathcal L}{2}x^Tx\end{aligned} 2LxTx其自身一定是个凸函数。该条件意味着:这两个凸函数的差也是凸函数

    如果从逻辑角度对 L 2 x T x − f ( x ) \begin{aligned}\frac{\mathcal L}{2}x^Tx - f(x)\end{aligned} 2LxTxf(x)进行认知:两个凸函数之间做减法,若 f ( x ) f(x) f(x)的陡峭程度要高于 L 2 x T x \begin{aligned}\frac{\mathcal L}{2}x^Tx\end{aligned} 2LxTx,这势必使得减法结果可能不是凸函数;因而该等价条件的本质依然是:约束 f ( x ) f(x) f(x)斜率的变化率,而该变化率的约束与利普希兹常数 L \mathcal L L存在关联关系

  • 关于函数的梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()具有余强制性 ( Co-coercive ) (\text{Co-coercive}) (Co-coercive)。即:
    [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 \left[\nabla f(x) - \nabla f(y)\right]^T(x - y) \geq \frac{1}{\mathcal L} ||\nabla f(x) - \nabla f(y)||^2 [f(x)f(y)]T(xy)L1∣∣∇f(x)f(y)2
    首先解释一下强制性 ( Coercive ) (\text{Coercive}) (Coercive)。它也被称作强单调性 ( Strongly monotonicity ) (\text{Strongly monotonicity}) (Strongly monotonicity)。从名字可以看出来——它比一般的单调性更强。关于 f ( ⋅ ) : R ↦ R f(\cdot) :\mathbb R \mapsto \mathbb R f():RR,其单调性的定义表示为:

    • 自变量的差异性与对应函数差异性之间同号。
    • 关于 n n n维的特征空间 f ( ⋅ ) : R n ↦ R n f(\cdot):\mathbb R^n \mapsto \mathbb R^n f():RnRn,那么此时的 f ( x ) − f ( y ) f(x) - f(y) f(x)f(y) x − y x - y xy都是向量。对应单调性的定义即: [ f ( x ) − f ( y ) ] T ( x − y ) ≥ 0 [f(x) - f(y)]^T(x - y) \geq 0 [f(x)f(y)]T(xy)0
      ∀ x , y ∈ R s . t . [ f ( x ) − f ( y ) ] ⋅ ( x − y ) ≥ 0 \forall x,y \in \mathbb R \quad s.t. [f(x) - f(y)] \cdot (x - y) \geq 0 x,yRs.t.[f(x)f(y)](xy)0

    强单调性单调性同号的基础上,进行了更强的约束:将式子右侧的 0 0 0替换为一个恒正的值。该值通常表示为:系数 α \alpha α x x x的增量 ∣ ∣ x − y ∣ ∣ 2 ||x - y||^2 ∣∣xy2的乘积形式
    [ f ( x ) − f ( y ) ] T ( x − y ) ≥ α ⋅ ∣ ∣ x − y ∣ ∣ 2 [f(x) - f(y)]^T (x - y) \geq \alpha \cdot ||x - y||^2 [f(x)f(y)]T(xy)α∣∣xy2
    若该值使用 f ( x ) f(x) f(x)的增量进行表示,我们称之为余强制性,也被称作逆向强单调性 ( Inverse Strongly monotonicity ) (\text{Inverse Strongly monotonicity}) (Inverse Strongly monotonicity)
    [ f ( x ) − f ( y ) ] T ( x − y ) ≥ α ⋅ ∣ ∣ f ( x ) − f ( y ) ∣ ∣ 2 [f(x) - f(y)]^T (x - y) \geq \alpha \cdot ||f(x) - f(y)||^2 [f(x)f(y)]T(xy)α∣∣f(x)f(y)2
    回顾等价条件 3 3 3:不等式左侧就是 ∇ f ( ⋅ ) \nabla f(\cdot) f()单调性的定义;不等式右侧则是关于余强制性的表述。需要关注的点在于:参与描述正值系数 α \alpha α利普希兹常数 L \mathcal L L之间存在关联关系 α = 1 L \begin{aligned}\alpha = \frac{1}{\mathcal L}\end{aligned} α=L1

证明过程

通过证明:条件 1 ⇒ 1 \Rightarrow 1条件 2 2 2条件 2 ⇒ 2 \Rightarrow 2条件 3 3 3,条件 3 ⇒ 3 \Rightarrow 3条件 1 1 1来实现 3 3 3个条件之间的等价关系。

证明:条件 1 ⇒ 1 \Rightarrow 1 条件 2 2 2

f ( ⋅ ) f(\cdot) f()凸函数,在定义域内可微;并且梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足 L \mathcal L L-利普希兹连续,求证:函数 G ( x ) = L 2 x T x − f ( x ) \begin{aligned}\mathcal G(x) = \frac{\mathcal L}{2} x^Tx - f(x)\end{aligned} G(x)=2LxTxf(x)凸函数
关于凸函数的一种证法在于,证明该函数的梯度满足单调性。之所以引入梯度的另一个原因是可以将 L 2 x T x \begin{aligned}\frac{\mathcal L}{2} x^Tx\end{aligned} 2LxTx化成一次项。

证明过程:由 G ( x ) = L 2 x T x − f ( x ) \begin{aligned}\mathcal G(x) = \frac{\mathcal L}{2} x^Tx -f(x)\end{aligned} G(x)=2LxTxf(x)可知,关于 G ( x ) \mathcal G(x) G(x)梯度 ∇ G ( x ) \nabla \mathcal G(x) G(x)可表示为
∇ G ( x ) = L ⋅ x − ∇ f ( x ) \nabla \mathcal G(x) = \mathcal L \cdot x - \nabla f(x) G(x)=Lxf(x)
至此,观察 ∇ G ( x ) \nabla \mathcal G(x) G(x)的单调性:
仅需证明 I ≥ 0 \mathcal I \geq 0 I0恒成立即可。
∀ x 1 , x 2 ∈ R n ⇒ I = [ ∇ G ( x 1 ) − ∇ G ( x 2 ) ] T ( x 1 − x 2 ) \forall x_1,x_2 \in \mathbb R^n \Rightarrow \mathcal I = [\nabla \mathcal G(x_1) - \nabla \mathcal G(x_2)]^T (x_1 - x_2) x1,x2RnI=[G(x1)G(x2)]T(x1x2)
将上述梯度结果代入,有:
继续展开~
I = [ L ⋅ x 1 − ∇ f ( x 1 ) − L ⋅ x 2 + ∇ f ( x 2 ) ] T ( x 1 − x 2 ) = L ⋅ ( x 1 − x 2 ) T ( x 1 − x 2 ) − [ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) \begin{aligned} \mathcal I & = [\mathcal L \cdot x_1 - \nabla f(x_1) - \mathcal L \cdot x_2 + \nabla f(x_2)]^T (x_1 - x_2) \\ & = \mathcal L\cdot (x_1 - x_2)^T(x_1 - x _2) - [\nabla f(x_1) - \nabla f(x_2)]^T(x_1 - x_2) \end{aligned} I=[Lx1f(x1)Lx2+f(x2)]T(x1x2)=L(x1x2)T(x1x2)[f(x1)f(x2)]T(x1x2)
观察后一项: − [ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) -[\nabla f(x_1) - \nabla f(x_2)]^T (x_1 - x_2) [f(x1)f(x2)]T(x1x2),这明显是两个向量的内积形式。可以根据柯西施瓦茨不等式,得到如下结果:
该部分同样可以使用向量乘法描述: a T b = ∣ a ∣ ⋅ ∣ b ∣ ⋅ cos ⁡ θ ≤ ∣ a ∣ ⋅ ∣ b ∣ a^Tb = |a|\cdot|b| \cdot \cos \theta \leq |a| \cdot |b| aTb=abcosθab因为 cos ⁡ θ ∈ [ − 1 , 1 ] ≤ 1 \cos \theta \in [-1,1] \leq 1 cosθ[1,1]1
[ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) ≤ ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ [\nabla f(x_1) - \nabla f(x_2)]^T(x_1 - x_2) \leq ||\nabla f(x_1) - \nabla f(x_2)|| \cdot ||x_1 - x_2|| [f(x1)f(x2)]T(x1x2)∣∣∇f(x1)f(x2)∣∣∣∣x1x2∣∣
加上负号与前一项,从而有:
至于 ( x 1 − x 2 ) T ( x 1 − x 2 ) = ∣ ∣ x 1 − x 2 ∣ ∣ 2 (x_1 - x_2)^T(x_1 - x_2) = ||x_1 - x_2||^2 (x1x2)T(x1x2)=∣∣x1x22,两向量重合,夹角为 0 0 0
I ≥ L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ 2 − ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ \mathcal I \geq \mathcal L \cdot ||x_1 - x_2||^2 - ||\nabla f(x_1) - \nabla f(x_2)|| \cdot ||x_1 - x_2|| IL∣∣x1x22∣∣∇f(x1)f(x2)∣∣∣∣x1x2∣∣
由于梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足 L \mathcal L L-利普希兹连续,因而将 ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ≤ L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ ||\nabla f(x_1) - \nabla f(x_2)|| \leq \mathcal L \cdot ||x_1 - x_2|| ∣∣∇f(x1)f(x2)∣∣L∣∣x1x2∣∣,对上式中的 ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ||\nabla f(x_1) - \nabla f(x_2)|| ∣∣∇f(x1)f(x2)∣∣进行替换,最终不等号的方向不发生变化
{ − ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ≥ − L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ I ≥ L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ 2 − ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ ≥ L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ 2 − ( L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ ) ⋅ ∣ ∣ ∣ x 1 − x 2 ∣ ∣ = 0 \begin{cases} -||\nabla f(x_1) - \nabla f(x_2)|| \geq -\mathcal L \cdot ||x_1 - x_2|| \\ \quad \\ \begin{aligned} \mathcal I & \geq \mathcal L \cdot ||x_1 - x_2||^2 - ||\nabla f(x_1) - \nabla f(x_2)|| \cdot ||x_1 - x_2|| \\ & \geq \mathcal L \cdot ||x_1 - x_2||^2 - (\mathcal L \cdot ||x_1 - x_2||) \cdot |||x_1 - x_2|| \\ & = 0 \end{aligned} \end{cases} ∣∣∇f(x1)f(x2)∣∣L∣∣x1x2∣∣IL∣∣x1x22∣∣∇f(x1)f(x2)∣∣∣∣x1x2∣∣L∣∣x1x22(L∣∣x1x2∣∣)∣∣∣x1x2∣∣=0

最终可证明: I ≥ 0 ⇒ \mathcal I \geq 0 \Rightarrow I0梯度函数 ∇ G ( x ) \nabla \mathcal G(x) G(x)有单调性。从而函数 G ( x ) \mathcal G(x) G(x)凸函数

证明:条件 3 ⇒ 3 \Rightarrow 3条件 1 1 1

梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()余强制性,那么该梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()满足 L \mathcal L L-利普希兹连续

证明过程:基于 ∇ f ( ⋅ ) \nabla f(\cdot) f()余强制性,结合柯西施瓦茨不等式,有:
使用柯西施瓦茨不等式将不等式左侧表示为模的乘积形式。
{ [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ 1 L ∣ ∣ ∇ f ( x ) − ∇ f ( y ) ∣ ∣ 2 ⇓ ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ ≥ [ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) ≥ 1 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 \begin{cases} \begin{aligned} \left[\nabla f(x) - \nabla f(y)\right]^T(x - y) & \geq \frac{1}{\mathcal L} ||\nabla f(x) - \nabla f(y)||^2 \\ & \Downarrow \\ ||\nabla f(x_1) - \nabla f(x_2)|| \cdot ||x_1 - x_2|| & \geq [\nabla f(x_1) - \nabla f(x_2)]^T (x_1 - x_2) \\ & \geq \frac{1}{\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2 \end{aligned} \end{cases} [f(x)f(y)]T(xy)∣∣∇f(x1)f(x2)∣∣∣∣x1x2∣∣L1∣∣∇f(x)f(y)2[f(x1)f(x2)]T(x1x2)L1∣∣∇f(x1)f(x2)2
消去 ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ||\nabla f(x_1) - \nabla f(x_2)|| ∣∣∇f(x1)f(x2)∣∣,整理有:
∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ ≤ L ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ ||\nabla f(x_1) - \nabla f(x_2)|| \leq \mathcal L \cdot ||x_1 - x_2|| ∣∣∇f(x1)f(x2)∣∣L∣∣x1x2∣∣
从而得证: ∇ f ( ⋅ ) \nabla f(\cdot) f()满足 L \mathcal L L-利普希兹连续

证明:条件 2 ⇒ 2 \Rightarrow 2条件 3 3 3

G ( x ) = L 2 x T x − f ( x ) \begin{aligned}\mathcal G(x) = \frac{\mathcal L}{2}x^Tx - f(x)\end{aligned} G(x)=2LxTxf(x)凸函数,那么关于梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()余强制性

证明思路:在证明之前,引入几个辅助变量:
余强制性不等式左侧 [ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) [\nabla f(x_1) - \nabla f(x_2)]^T (x_1 - x_2) [f(x1)f(x2)]T(x1x2)记作 Δ \Delta Δ,并将其分解为如下形式:

  • 其中将 x 1 − x 2 x_1 - x_2 x1x2转化成 − ( x 2 − x 1 ) -(x_2 - x_1) (x2x1),并将负号提出来。
  • 其中 [ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T = { [ ∇ f ( x 1 ) ] T − [ ∇ f ( x 2 ) ] T } [\nabla f(x_1) - \nabla f(x_2)]^T = \left\{[\nabla f(x_1)]^T - [\nabla f(x_2)]^T\right\} [f(x1)f(x2)]T={[f(x1)]T[f(x2)]T}
    Δ = [ f ( x 1 ) + f ( x 2 ) ] − [ f ( x 1 ) + f ( x 2 ) ] ⏟ = 0 − { [ ∇ f ( x 1 ) ] T − [ ∇ f ( x 2 ) ] T } ( x 2 − x 1 ) = f ( x 2 ) − { f ( x 1 ) + [ ∇ f ( x 1 ) ] T ( x 2 − x 1 ) } ⏟ Δ 1 + f ( x 1 ) − { f ( x 2 ) + [ ∇ f ( x 2 ) ] T ( x 1 − x 2 ) } ⏟ Δ 2 = Δ 1 + Δ 2 \begin{aligned} \Delta & = \underbrace{[f(x_1) + f(x_2)] - [f(x_1) + f(x_2)]}_{=0} - \left\{[\nabla f(x_1)]^T - [\nabla f(x_2)]^T\right\}(x_2 - x_1) \\ & = \underbrace{f(x_2) - \{f(x_1) + [\nabla f(x_1)]^T (x_2 - x_1)\}}_{\Delta_1} + \underbrace{f(x_1) - \left\{f(x_2) + [\nabla f(x_2)]^T(x_1 - x_2)\right\}}_{\Delta_2} \\ & = \Delta_1 + \Delta_2 \end{aligned} Δ==0 [f(x1)+f(x2)][f(x1)+f(x2)]{[f(x1)]T[f(x2)]T}(x2x1)=Δ1 f(x2){f(x1)+[f(x1)]T(x2x1)}+Δ2 f(x1){f(x2)+[f(x2)]T(x1x2)}=Δ1+Δ2

可以在图像中描述出 Δ 1 , Δ 2 \Delta_1,\Delta_2 Δ1,Δ2的表示:

  • 其中 f ( x 1 ) + [ ∇ f ( x 1 ) ] T ( x 2 − x 1 ) f(x_1) + [\nabla f(x_1)]^T (x_2 - x_1) f(x1)+[f(x1)]T(x2x1)表示过点 x 1 x_1 x1 f ( ⋅ ) f(\cdot) f()的切线,与 x = x 2 x= x_2 x=x2相交后,到点 x 2 x_2 x2的距离。见黄色实线部分;
  • 对应 Δ 1 \Delta_1 Δ1则表示: f ( x 2 ) f(x_2) f(x2) f ( x 1 ) + [ ∇ f ( x 1 ) ] T ( x 2 − x 1 ) f(x_1) + [\nabla f(x_1)]^T (x_2 - x_1) f(x1)+[f(x1)]T(x2x1)之间的距离差值。见红色实线部分。
  • 同理,关于 Δ 2 \Delta_2 Δ2的图像描述表示为:
    对应的 Δ 2 \Delta_2 Δ2表示为图中的绿色实线部分。
    描述示例
    如果 Δ 1 \Delta_1 Δ1或者 Δ 2 \Delta_2 Δ2满足: Δ 1 ; Δ 2 ≥ 1 2 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 \begin{aligned}\Delta_1;\Delta_2 \geq \frac{1}{2\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2\end{aligned} Δ1;Δ22L1∣∣∇f(x1)f(x2)2即可。

证明过程
这里以 Δ 1 \Delta_1 Δ1为例,将 Δ 1 \Delta_1 Δ1展开,有:
Δ 1 = f ( x 2 ) − [ ∇ f ( x 1 ) ] T x 2 ⏟ 1 − { f ( x 1 ) − [ ∇ f ( x 1 ) ] T x 1 } ⏟ 2 \begin{aligned} \Delta_1 & = \underbrace{f(x_2) - [\nabla f(x_1)]^T x_2}_{1} - \underbrace{\left\{f(x_1) - [\nabla f(x_1)]^T x_1 \right\}}_{2} \end{aligned} Δ1=1 f(x2)[f(x1)]Tx22 {f(x1)[f(x1)]Tx1}
可以发现,上述的 1 , 2 1,2 1,2两个部分存在相同的格式。因此假设一个函数:
关于函数 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z),其中 Z \mathcal Z Z是自变量,而内部的 x 1 x_1 x1被视作可变参数。
H x 1 ( Z ) = f ( Z ) − [ ∇ f ( x 1 ) ] T Z \mathcal H_{x_1}(\mathcal Z) = f(\mathcal Z) - [\nabla f(x_1)]^T \mathcal Z Hx1(Z)=f(Z)[f(x1)]TZ
从而 Δ 1 \Delta_1 Δ1可表示为:
Δ 1 = H x 1 ( x 2 ) − H x 1 ( x 1 ) \Delta_1 = \mathcal H_{x_1}(x_2) - \mathcal H_{x_1}(x_1) Δ1=Hx1(x2)Hx1(x1)
观察 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)函数,其中 f ( Z ) f(\mathcal Z) f(Z)是关于 Z \mathcal Z Z凸函数;而 − [ ∇ f ( x 1 ) ] T Z -[\nabla f(x_1)]^T \mathcal Z [f(x1)]TZ本质上是关于 Z \mathcal Z Z一次函数,自然也是凸函数。根据保凸运算可知, H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)一定是一个凸函数;并且由于 f ( Z ) f(\mathcal Z) f(Z) − [ ∇ f ( x 1 ) ] T Z -[\nabla f(x_1)]^T \mathcal Z [f(x1)]TZ均在 Z \mathcal Z Z定义域内可微,因而 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)同样可微。因而 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)关于 Z \mathcal Z Z梯度 ∇ H x 1 ( Z ) \nabla \mathcal H_{x_1}(\mathcal Z) Hx1(Z)可表示为:
∇ H x 1 ( Z ) = ∇ f ( Z ) − ∇ f ( x 1 ) \begin{aligned}\nabla \mathcal H_{x_1}(\mathcal Z) = \nabla f(\mathcal Z) - \nabla f(x_1) \end{aligned} Hx1(Z)=f(Z)f(x1)
Z = x 1 \mathcal Z = x_1 Z=x1时,有: ∇ H x 1 ( x 1 ) = 0 \nabla \mathcal H_{x_1}(x_1) = 0 Hx1(x1)=0。这意味着: Z = x 1 \mathcal Z = x_1 Z=x1是函数 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)的极值点。而又因为 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)凸函数性质,因而该点一定是最小值点。记 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)最小值结果为 H x 1 ∗ \mathcal H_{x_1}^* Hx1,从而可得:
H x 1 ∗ = H x 1 ( x 1 ) \mathcal H_{x_1}^* = \mathcal H_{x_1}(x_1) Hx1=Hx1(x1)
根据条件 2 2 2 G ( Z ) = L 2 Z T Z − f ( Z ) \begin{aligned}\mathcal G(\mathcal Z) = \frac{\mathcal L}{2} \mathcal Z^T \mathcal Z - f(\mathcal Z) \end{aligned} G(Z)=2LZTZf(Z)是凸函数,将 f ( Z ) = H x 1 ( Z ) + [ ∇ f ( x 1 ) ] T Z f(\mathcal Z) = \mathcal H_{x_1}(\mathcal Z) + [\nabla f(x_1)]^T \mathcal Z f(Z)=Hx1(Z)+[f(x1)]TZ代入到条件 2 2 2中有:
这里将变量符号 x x x替换成变量符号 Z \mathcal Z Z,便于下面的计算,并将 Z T Z \mathcal Z^T\mathcal Z ZTZ使用 ∣ ∣ Z ∣ ∣ 2 ||\mathcal Z||^2 ∣∣Z2替代。
G ( Z ) = L 2 ∣ ∣ Z ∣ ∣ 2 − f ( Z ) = L 2 ∣ ∣ Z ∣ ∣ 2 − H x 1 ( Z ) − [ ∇ f ( x 1 ) ] T Z ⇒ G ( Z ) + [ ∇ f ( x 1 ) ] T Z = L 2 ∣ ∣ Z ∣ ∣ 2 − H x 1 ( Z ) \begin{aligned} \mathcal G(\mathcal Z) & = \frac{\mathcal L}{2}||\mathcal Z||^2 - f(\mathcal Z) \\ & = \frac{\mathcal L}{2}||\mathcal Z||^2 - \mathcal H_{x_1}(\mathcal Z) - [\nabla f(x_1)]^T \mathcal Z \\ & \quad \\ \Rightarrow \mathcal G(\mathcal Z) + & [\nabla f(x_1)]^T \mathcal Z = \frac{\mathcal L}{2}||\mathcal Z||^2 - \mathcal H_{x_1}(\mathcal Z) \end{aligned} G(Z)G(Z)+=2L∣∣Z2f(Z)=2L∣∣Z2Hx1(Z)[f(x1)]TZ[f(x1)]TZ=2L∣∣Z2Hx1(Z)
观察上式的等号左侧 G ( Z ) + [ ∇ f ( x 1 ) ] T Z \mathcal G(\mathcal Z) + [\nabla f(x_1)]^T \mathcal Z G(Z)+[f(x1)]TZ,同样可以如法炮制 H x 1 ( Z ) = f ( Z ) + [ ∇ f ( x 1 ) ] T Z \mathcal H_{x_1}(\mathcal Z) = f(\mathcal Z) + [\nabla f(x_1)]^T \mathcal Z Hx1(Z)=f(Z)+[f(x1)]TZ一样,定义一个符号 G x 1 ( Z ) \mathcal G_{x_1}(\mathcal Z) Gx1(Z),使得:
G x 1 ( Z ) = G ( Z ) + [ ∇ f ( x 1 ) ] T Z \mathcal G_{x_1}(\mathcal Z) = \mathcal G(\mathcal Z) + [\nabla f(x_1)]^T \mathcal Z Gx1(Z)=G(Z)+[f(x1)]TZ
观察 G x 1 ( Z ) \mathcal G_{x_1}(\mathcal Z) Gx1(Z)相关性质

  • 关于第一项,根据条件 2 2 2描述: G ( Z ) \mathcal G(\mathcal Z) G(Z)自身是凸函数,可微
  • 关于第二项与 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)的第二项相同:关于 Z \mathcal Z Z一次函数 [ ∇ f ( x 1 ) ] T Z [\nabla f(x_1)]^T \mathcal Z [f(x1)]TZ同样是凸函数,并在自身定义域内可微

综上,依然可以根据保凸运算,关于函数 G x 1 ( Z ) \mathcal G_{x_1}(\mathcal Z) Gx1(Z)也是凸函数,并在定义域内可微。从而该函数的梯度 ∇ G x 1 ( Z ) \nabla \mathcal G_{x_1}(\mathcal Z) Gx1(Z)表示如下:
∇ G x 1 ( Z ) = L 2 ⋅ 2 ⋅ Z − ∇ H x 1 ( Z ) = L ⋅ Z − ∇ H x 1 ( Z ) \begin{aligned} \nabla \mathcal G_{x_1}(\mathcal Z) & = \frac{\mathcal L}{2} \cdot 2 \cdot \mathcal Z - \nabla \mathcal H_{x_1}(\mathcal Z) \\ & = \mathcal L \cdot \mathcal Z - \nabla \mathcal H_{x_1}(\mathcal Z) \end{aligned} Gx1(Z)=2L2ZHx1(Z)=LZHx1(Z)
根据 G x 1 ( Z ) \mathcal G_{x_1}(\mathcal Z) Gx1(Z)凸函数的性质,在 Z \mathcal Z Z定义域内取 z 1 ≤ z 2 , z 1 , z 2 ∈ R z_1 \leq z_2,z_1,z_2 \in \mathbb R z1z2,z1,z2R,必然有:
G x 1 ( z 2 ) ≥ G x 1 ( z 1 ) + [ ∇ G x 1 ( z 1 ) ] T ( z 2 − z 1 ) \mathcal G_{x_1}(z_2) \geq \mathcal G_{x_1}(z_1) + \left[\nabla \mathcal G_{x_1}(z_1)\right]^T(z_2 - z_1) Gx1(z2)Gx1(z1)+[Gx1(z1)]T(z2z1)
从上述图像中观察更加直观。也就是说: Δ 1 ≥ 0 \Delta_1 \geq 0 Δ10恒成立。将上述 G x 1 ( Z ) = L 2 ∣ ∣ Z ∣ ∣ 2 − H x 1 ( Z ) \begin{aligned}\mathcal G_{x_1}(\mathcal Z) = \frac{\mathcal L}{2}||\mathcal Z||^2 - \mathcal H_{x_1}(\mathcal Z)\end{aligned} Gx1(Z)=2L∣∣Z2Hx1(Z)代入,有:
L 2 ∣ ∣ z 2 ∣ ∣ 2 − H x 1 ( z 2 ) ⏟ G x 1 ( z 2 ) ≥ L 2 ∣ ∣ z 1 ∣ ∣ 2 − H x 1 ( z 1 ) ⏟ G x 1 ( x 1 ) + [ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ] T ⏟ [ G x 1 ( z 1 ) ] T ⋅ ( z 2 − z 1 ) \underbrace{\frac{\mathcal L}{2} ||z_2||^2 - \mathcal H_{x_1}(z_2)}_{\mathcal G_{x_1}(z_2)} \geq \underbrace{\frac{\mathcal L}{2}||z_1||^2 - \mathcal H_{x_1}(z_1)}_{\mathcal G_{x_1}(x_1)} + \underbrace{[\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)]^T}_{[\mathcal G_{x_1}(z_1)]^T} \cdot (z_2 - z_1) Gx1(z2) 2L∣∣z22Hx1(z2)Gx1(x1) 2L∣∣z12Hx1(z1)+[Gx1(z1)]T [Lz1Hx1(z1)]T(z2z1)
至此,描述 G x 1 ( Z ) \mathcal G_{x_1}(\mathcal Z) Gx1(Z)凸函数性质的式子全部由 H x 1 ( Z ) \mathcal H_{x_1}(\mathcal Z) Hx1(Z)进行代替。经过整理,有:
对比一下二次上界引理,它们确实比较相似,但并不是。因为 L 2 ∣ ∣ z 2 ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 \begin{aligned}\frac{\mathcal L}{2}||z_2||^2 - \frac{\mathcal L}{2}||z_1||^2\end{aligned} 2L∣∣z222L∣∣z12 L 2 ∣ ∣ z 2 − z 1 ∣ ∣ 2 \begin{aligned}\frac{\mathcal L}{2}||z_2 - z_1||^2\end{aligned} 2L∣∣z2z12绝大多数情况不相等。
H x 1 ( z 2 ) ≤ L 2 ∣ ∣ z 2 ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + H x 1 ( z 1 ) + [ ∇ H x 1 ( z 1 ) − L ⋅ z 1 ] T ( z 2 − z 1 ) \mathcal H_{x_1}(z_2) \leq \frac{\mathcal L}{2}||z_2||^2 - \frac{\mathcal L}{2} ||z_1||^2 + \mathcal H_{x_1}(z_1) + \left[\nabla \mathcal H_{x_1}(z_1) - \mathcal L \cdot z_1\right]^T(z_2 - z_1) Hx1(z2)2L∣∣z222L∣∣z12+Hx1(z1)+[Hx1(z1)Lz1]T(z2z1)
但该式子并不影响我们使用二次上界引理中的操作: z 1 z_1 z1视作上一次迭代产生的数值解,因而 z 1 z_1 z1是已知项,从而不等式右侧是关于 z 2 z_2 z2的函数,记作 ϕ ( z 2 ) \phi(z_2) ϕ(z2)
H x 1 ( z 2 ) ≤ ϕ ( z 2 ) ≜ L 2 ∣ ∣ z 2 ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + H x 1 ( z 1 ) + [ ∇ H x 1 ( z 1 ) − L ⋅ z 1 ] T ( z 2 − z 1 ) \mathcal H_{x_1}(z_2) \leq \phi(z_2) \triangleq \frac{\mathcal L}{2}||z_2||^2 - \frac{\mathcal L}{2} ||z_1||^2 + \mathcal H_{x_1}(z_1) + \left[\nabla \mathcal H_{x_1}(z_1) - \mathcal L \cdot z_1\right]^T(z_2 - z_1) Hx1(z2)ϕ(z2)2L∣∣z222L∣∣z12+Hx1(z1)+[Hx1(z1)Lz1]T(z2z1)
再次观察 ϕ ( z 2 ) \phi(z_2) ϕ(z2) z 2 z_2 z2相关的项(其中仅与 z 1 z_1 z1相关的项被视作常数):

  • L 2 ∣ ∣ z 2 ∣ ∣ 2 \begin{aligned}\frac{\mathcal L}{2}||z_2||^2\end{aligned} 2L∣∣z22是关于 z 2 z_2 z2二次项,是凸函数;且二次项系数 L 2 ≥ 0 \begin{aligned}\frac{\mathcal L}{2} \geq 0\end{aligned} 2L0,必然存在最小值
  • [ ∇ H x 1 ( z 1 ) − L ⋅ z 1 ] T ( z 2 − z 1 ) \left[\nabla \mathcal H_{x_1}(z_1) - \mathcal L \cdot z_1\right]^T(z_2 - z_1) [Hx1(z1)Lz1]T(z2z1)是关于 z 1 z_1 z1一次函数,同样是凸函数。

最终通过保凸运算,能够确定 ϕ ( z 2 ) \phi(z_2) ϕ(z2)是一个凸二次函数。由于 H x 1 ( z 2 ) ≤ ϕ ( z 2 ) \mathcal H_{x_1}(z_2) \leq \phi(z_2) Hx1(z2)ϕ(z2),必然也小于 ϕ ( z 2 ) \phi(z_2) ϕ(z2)最小值,也就是下界 inf ⁡ { ϕ ( z 2 ) } = min ⁡ ϕ ( z 2 ) \inf \{\phi(z_2)\} = \mathop{\min} \phi(z_2) inf{ϕ(z2)}=minϕ(z2)
H x 1 ( z 2 ) ≤ inf ⁡ { ϕ ( z 2 ) } \mathcal H_{x_1}(z_2) \leq \inf \{\phi(z_2)\} Hx1(z2)inf{ϕ(z2)}
下面关于 inf ⁡ { ϕ ( z 2 ) } \inf\{\phi(z_2)\} inf{ϕ(z2)}进行求解:

  • 求解梯度 ∇ ϕ ( z 2 ) \nabla \phi(z_2) ϕ(z2)
    ∇ ϕ ( z 2 ) = L ⋅ z 2 + ∇ H x 1 ( z 1 ) − L ⋅ z 1 \nabla \phi(z_2) = \mathcal L \cdot z_2 + \nabla \mathcal H_{x_1}(z_1) - \mathcal L \cdot z_1 ϕ(z2)=Lz2+Hx1(z1)Lz1
  • ∇ ϕ ( z 2 ) ≜ 0 \nabla \phi(z_2) \triangleq 0 ϕ(z2)0,有:
    也就是说: ϕ ( z 2 ; m i n ) = min ⁡ ϕ ( z 2 ) \phi(z_{2;min}) = \min \phi(z_2) ϕ(z2;min)=minϕ(z2)
    z 2 ; m i n = z 1 − ∇ H x 1 ( z 1 ) L z_{2;min} =z_1 - \frac{\nabla \mathcal H_{x_1}(z_1)}{\mathcal L} z2;min=z1LHx1(z1)
  • z 2 ; m i n z_{2;min} z2;min带回原式,得到 min ⁡ ϕ ( z 2 ) \min \phi(z_2) minϕ(z2)有:
    ϕ ( z 2 ; m i n ) = L 2 ∣ ∣ L ⋅ z 1 − ∇ H x 1 ( z 1 ) L ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + H x 1 ( z 1 ) + [ ∇ H x 1 ( z 1 ) − L ⋅ z 1 ] T [ − ∇ H x 1 ( z 1 ) L ] \phi(z_{2;min}) = \frac{\mathcal L}{2} ||\frac{\mathcal L\cdot z_1 - \nabla \mathcal H_{x_1}(z_1)}{\mathcal L}||^2 - \frac{\mathcal L}{2}||z_1||^2 + \mathcal H_{x_1}(z_1) + [\nabla \mathcal H_{x_1}(z_1) - \mathcal L \cdot z_1]^T\left[- \frac{\nabla \mathcal H_{x_1}(z_1)}{\mathcal L}\right] ϕ(z2;min)=2L∣∣LLz1Hx1(z1)22L∣∣z12+Hx1(z1)+[Hx1(z1)Lz1]T[LHx1(z1)]
  • 很明显,只剩下了已知项 z 1 z_1 z1。整理有:
    • 提出公因式 1 2 L [ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ] \begin{aligned}\frac{1}{2\mathcal L}[\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)]\end{aligned} 2L1[Lz1Hx1(z1)]
    • 使用乘法分配律~
      ϕ ( z 2 ; m i n ) = 1 2 L ∣ ∣ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ∣ ∣ 2 − L 2 ∣ ∣ z 1 ∣ ∣ 2 + H x 1 ( z 1 ) + 1 L [ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ] T ∇ H x 1 ( z 1 ) = 1 2 L [ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ] T { L ⋅ z 1 − ∇ H x 1 ( z 1 ) + 2 ∇ H x 1 ( z 1 ) } + h x 1 ( z 1 ) − L 2 ∣ ∣ z 1 ∣ ∣ 2 = 1 2 L [ L ⋅ z 1 − ∇ H x 1 ( z 1 ) ] T { L ⋅ z 1 + ∇ H x 1 ( z 1 ) } ⏟ 分配律 + h x 1 ( z 1 ) − L 2 ∣ ∣ z 1 ∣ ∣ 2 = 1 2 L [ L 2 ⋅ ∣ ∣ z 1 ∣ ∣ 2 − ∣ ∣ ∇ H x 1 ( z 1 ) ∣ ∣ 2 ] + H x 1 ( z 1 ) − L 2 ∣ ∣ z 1 ∣ ∣ 2 = H x 1 ( z 1 ) − 1 2 L ∣ ∣ ∇ H x 1 ( z 1 ) ∣ ∣ 2 \begin{aligned} \phi(z_{2;min}) & = \frac{1}{2\mathcal L}||\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)||^2 - \frac{\mathcal L}{2}||z_1||^2 + \mathcal H_{x_1}(z_1) + \frac{1}{\mathcal L} [\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)]^T \nabla \mathcal H_{x_1}(z_1) \\ & = \frac{1}{2\mathcal L} [\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)]^T \left\{\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1) + 2 \nabla \mathcal H_{x_1}(z_1)\right\} + h_{x_1}(z_1) - \frac{\mathcal L}{2}||z_1||^2 \\ & = \frac{1}{2\mathcal L} \underbrace{[\mathcal L \cdot z_1 - \nabla \mathcal H_{x_1}(z_1)]^T \left\{\mathcal L \cdot z_1 + \nabla \mathcal H_{x_1}(z_1) \right\}}_{分配律} + h_{x_1}(z_1) - \frac{\mathcal L}{2}||z_1||^2 \\ & = \frac{1}{2\mathcal L} \left[\mathcal L^2 \cdot ||z_1||^2 - ||\nabla \mathcal H_{x_1}(z_1)||^2\right] + \mathcal H_{x_1}(z_1) - \frac{\mathcal L}{2}||z_1||^2 \\ & = \mathcal H_{x_1}(z_1) - \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(z_1)||^2 \end{aligned} ϕ(z2;min)=2L1∣∣Lz1Hx1(z1)22L∣∣z12+Hx1(z1)+L1[Lz1Hx1(z1)]THx1(z1)=2L1[Lz1Hx1(z1)]T{Lz1Hx1(z1)+2∇Hx1(z1)}+hx1(z1)2L∣∣z12=2L1分配律 [Lz1Hx1(z1)]T{Lz1+Hx1(z1)}+hx1(z1)2L∣∣z12=2L1[L2∣∣z12∣∣∇Hx1(z1)2]+Hx1(z1)2L∣∣z12=Hx1(z1)2L1∣∣∇Hx1(z1)2

至此,我们找到了关于 H x 1 ( z 2 ) \mathcal H_{x_1}(z_2) Hx1(z2)二次上界
H x 1 ( z 2 ) ≤ H x 1 ( z 1 ) − 1 2 L ∣ ∣ ∇ H x 1 ( z 1 ) ∣ ∣ 2 \mathcal H_{x_1}(z_2) \leq \mathcal H_{x_1}(z_1) - \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(z_1)||^2 Hx1(z2)Hx1(z1)2L1∣∣∇Hx1(z1)2
H x 1 ( ⋅ ) \mathcal H_{x_1}(\cdot) Hx1()函数的收敛过程中,其最小值 H x 1 ∗ \mathcal H_{x_1}^* Hx1必然有:
通过数值解只能无限接近最小值。
H x 1 ∗ ≤ H x 1 ( z 2 ) ≤ H x 1 ( z 1 ) − 1 2 L ∣ ∣ ∇ H x 1 ( z 1 ) ∣ ∣ 2 \mathcal H_{x_1}^* \leq \mathcal H_{x_1}(z_2) \leq \mathcal H_{x_1}(z_1) - \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(z_1)||^2 Hx1Hx1(z2)Hx1(z1)2L1∣∣∇Hx1(z1)2
因为 H x 1 ( ⋅ ) \mathcal H_{x_1}(\cdot) Hx1()函数在 x 1 x_1 x1处取得最小值: H x 1 ( x 1 ) = H x 1 ∗ \mathcal H_{x_1}(x_1) = \mathcal H_{x_1}^* Hx1(x1)=Hx1,并且 z 1 z_1 z1 x 1 x_1 x1定义域相同,不妨设: z 1 = x 2 z_1 = x_2 z1=x2,有:
H x 1 ( x 1 ) ≤ H x 1 ( x 2 ) − 1 2 L ∣ ∣ ∇ H x 1 ( x 2 ) ∣ ∣ 2 ⇒ H x 1 ( x 2 ) − H x 1 ( x 1 ) ≥ 1 2 L ∣ ∣ ∇ H x 1 ( x 2 ) ∣ ∣ 2 \begin{aligned} & \mathcal H_{x_1}(x_1) \leq \mathcal H_{x_1}(x_2) - \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(x_2)||^2 \\ \Rightarrow & \mathcal H_{x_1}(x_2) - \mathcal H_{x_1}(x_1) \geq \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(x_2)||^2 \end{aligned} Hx1(x1)Hx1(x2)2L1∣∣∇Hx1(x2)2Hx1(x2)Hx1(x1)2L1∣∣∇Hx1(x2)2
由于 Δ 1 = H x 1 ( x 2 ) − H x 1 ( x 1 ) \Delta_1 = \mathcal H_{x_1}(x_2) - \mathcal H_{x_1}(x_1) Δ1=Hx1(x2)Hx1(x1),因而最终有:
∇ H x 1 ( Z = x 2 ) = ∇ f ( x 2 ) − ∇ f ( x 1 ) \nabla \mathcal H_{x_1}(\mathcal Z = x_2) = \nabla f(x_2) - \nabla f(x_1) Hx1(Z=x2)=f(x2)f(x1)代入:
Δ 1 ≥ 1 2 L ∣ ∣ ∇ H x 1 ( x 2 ) ∣ ∣ 2 = 1 2 L ∣ ∣ ∇ f ( x 2 ) − ∇ f ( x 1 ) ∣ ∣ 2 = 1 2 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 \begin{aligned} \Delta_1 & \geq \frac{1}{2\mathcal L}||\nabla \mathcal H_{x_1}(x_2)||^2 \\ & = \frac{1}{2\mathcal L} ||\nabla f(x_2) - \nabla f(x_1)||^2 \\ & = \frac{1}{2\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2 \end{aligned} Δ12L1∣∣∇Hx1(x2)2=2L1∣∣∇f(x2)f(x1)2=2L1∣∣∇f(x1)f(x2)2
当然,这仅仅证明了一半,我们同样需要针对 Δ 2 \Delta_2 Δ2执行上述流程:
和上述流程完全相同,只不过可变参数由 x 1 x_1 x1变成了 x 2 x_2 x2,这里不再赘述。
Δ 2 = [ f ( x 1 ) − f ( x 2 ) ] − { [ ∇ f ( x 2 ) ] T x 1 − [ ∇ f ( x 2 ) ] T x 2 } = f ( x 1 ) − [ ∇ f ( x 2 ) ] T x 1 ⏟ 1 − { f ( x 2 ) − [ ∇ f ( x 2 ) ] T x 2 } ⏟ 2 = H x 2 ( x 1 ) − H x 2 ( x 2 ) \begin{aligned} \Delta_2 & = [f(x_1) - f(x_2)] - \left\{[\nabla f(x_2)]^T x_1 - [\nabla f(x_2)]^T x_2 \right\} \\ & = \underbrace{f(x_1) - [\nabla f(x_2)]^T x_1}_{1} - \underbrace{\{f(x_2) - [\nabla f(x_2)]^T x_2\}}_{2} \\ & = \mathcal H_{x_2}(x_1) - \mathcal H_{x_2}(x_2) \end{aligned} Δ2=[f(x1)f(x2)]{[f(x2)]Tx1[f(x2)]Tx2}=1 f(x1)[f(x2)]Tx12 {f(x2)[f(x2)]Tx2}=Hx2(x1)Hx2(x2)
最终也可以得到一个类似结果:
Δ 2 ≥ 1 2 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 \Delta_2 \geq \frac{1}{2\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2 Δ22L1∣∣∇f(x1)f(x2)2
从而最终可得:
Δ 1 + Δ 2 ≥ 2 ⋅ 1 2 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 = 1 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 \begin{aligned} \Delta_1 + \Delta_2 & \geq 2 \cdot \frac{1}{2\mathcal L}||\nabla f(x_1) - \nabla f(x_2)||^2 \\ & = \frac{1}{\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2 \end{aligned} Δ1+Δ222L1∣∣∇f(x1)f(x2)2=L1∣∣∇f(x1)f(x2)2
即:
[ ∇ f ( x 1 ) − ∇ f ( x 2 ) ] T ( x 1 − x 2 ) ≥ 1 L ∣ ∣ ∇ f ( x 1 ) − ∇ f ( x 2 ) ∣ ∣ 2 [\nabla f(x_1) - \nabla f(x_2)]^T(x_1 - x_2) \geq \frac{1}{\mathcal L} ||\nabla f(x_1) - \nabla f(x_2)||^2 [f(x1)f(x2)]T(x1x2)L1∣∣∇f(x1)f(x2)2
梯度函数 ∇ f ( ⋅ ) \nabla f(\cdot) f()具备余强制性,证毕。

相关参考:
【优化算法】梯度下降法-白老爹定理(上)
【优化算法】梯度下降法-白老爹定理(下)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/84976.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一个计算机专业的学生数据结构这门课学到什么程度才能算学的还不错?

数据结构之所以重要是因为它处于算法中的基础地位,与解决实际问题关系密切;而之所以不重要是因为课本上能学到的所有实现都已经有人造过轮子了,甚至已经作为很多语言的标准API存在了。 换句话来说,在以后的编码生涯中&#xff0c…

ceph集群的扩容缩容

文章目录 集群扩容添加osd使用ceph-deploy工具手动添加 添加节点新节点前期准备新节点安装ceph,出现版本冲突 ceph-deploy增加节点 集群缩容删除osd删除节点 添加monitor节点删除monitor节点使用ceph-deploy卸载集群 实验所用虚拟机均为Centos 7.6系统,8…

Leetcode74. 搜索二维矩阵

给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非递减顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。 class…

【从零开始的rust web开发之路 二】axum中间件和共享状态使用

系列文章目录 第一章 axum学习使用 第二章 axum中间件使用 文章目录 系列文章目录前言一、中间件是什么二、中间件使用常用中间件使用中间件使用TraceLayer中间件实现请求日志打印自定义中间件 共享状态 前言 上篇文件讲了路由和参数相应相关的。axum还有个关键的地方是中间件…

防火墙+路由模式部署

一、防火墙 防火墙最主要功能是提供访问控制能力 防火墙默认管理口为ge0/0(部分型号有专门的MGT口),管理地址为https://192.168.1.250,默认管理口只开启了https和ping。登录防火墙串口,波特率为9600,默认…

【校招VIP】测试专业课之TCP/IP模型

考点介绍: 大厂测试校招面试里经常会出现TCP/IP模型的考察,TCP/IP协议是网络基础知识,但是在校招面试中很多同学在基础回答中不到位,或者倒在引申问题里,就丢分了。 『测试专业课之TCP/IP模型』相关题目及解析内容可点…

uniapp-滑块验证组件wo-slider

wo-slider是一款支持高度自定义的滑块验证组件,采用uniapp-vue2编写 采用touchstart、touchmove、touchend事件实现的滑块组件,支持H5、微信小程序(其他小程序未试过,可自行尝试) 可到插件市场下载尝试: https://ext.…

算法通关村十二关 | 字符串转换

1. 转换小写字母 LeetCode709:给你一个字符串s,将该字符串中的大写字母转换成相同的小写字母,返回新的字符串。 每个字母都是有确定的ASCII的,可以根据码表操作子字符串,常见的ASCII范围是: a-z: 97-122, …

无涯教程-Perl - warn函数

描述 此函数将LIST的值打印到STDERR。基本上与die函数相同,除了不对出口进行任何调用并且在eval语句内不引发异常。这对于引发错误而不导致脚本过早终止很有用。 如果变量$包含一个值(来自先前的eval调用),并且LIST为空,则$的值将以。\t.caught打印。附加到末尾。如果$和LIST…

聚观早报|京东称在技术投入没有止境;木蚁机器人完成B2轮融资

【聚观365】8月18日消息 京东零售CEO表示在技术上投入没有止境 木蚁机器人完成B2轮超亿元融资 耐能推出AI芯片KL730 三星电子泰勒晶圆厂首家客户是AI半导体厂商 韩国新能源汽车7月出口额同比大增36% 京东零售CEO表示在技术上投入没有止境 近日,京东零售CEO辛利…

Python开发环境(Visual Studio Code、Anaconda、PyInstaller、Enigma Virtual Box)

Python开发环境 [Anaconda、PyInstaller、Enigma Virtual Box] AnacondaAnaconda安装搭建Python环境Anaconda命令 Visual Studio CodeVisual Studio Code中Python设置Visual Studio Code中安装PyQt5Visual Studio Code中使用Qt DesignerVisual Studio Code中Anaconda切换虚拟环…

了解 JSON 格式

一、JSON 基础 JSON(JavaScript Object Notation,JavaScript 对象表示法)是一种轻量级的数据交换格式,JSON 的设计目的是使得数据的存储和交换变得简单。 JSON 易于人的阅读和书写,同时也易于机器的解析和生成。尽管 J…

Apache BeanUtils工具介绍

beanutils,顾名思义,是java bean的一个工具类,可以帮助我们方便的读取(get)和设置(set)bean属性值、动态定义和访问bean属性;细心的话,会发现其实JDK已经提供了一个java.beans包,同样可以实现以上功能&…

Vue2.0+webpack 引入字体文件(eot,ttf,woff)

webpack.base.config.js 需要配置 {test:/\/(woff2?|eot|ttf|otf)(\?.*)?$/,loader: url-loader,options: {limit: 10000,name: utils.assetsPath(fonts/[name].[hash:7].[ext])}} 如果 Vue2.0webpack3.6引入字体文件(eot,ttf,woff&…

[PyTorch][chapter 51][Auto-Encoder -1]

目录: 简介 损失函数 自动编码器的类型 一 AutoEncoder 简介: 自动编码器是一种神经网络,用于无监督学习任务.(没有标签或标记数据), 例如降维,特征提取和数据压缩. 主要任务: 1: 输入数据 …

SCSS 学习笔记 和 vscode下载live sass compiler插件配置

1、下载livelive sass compiler插件并配置 // 在 已有代码 下面 添加下面 代码,一般刚刚下载打开最后一行是:// "liveSassCompile.settings.autoprefix": [],// 所以直接 把下面复制进去保存就行"liveSassCompile.settings.autoprefix&qu…

产业园区数字孪生3d可视化全景展示方案

随着数字经济的发展,数字技术给企业发展带来了机遇的同时,也为企业管理带来挑战。比如园区运维,不仅体量大,复杂的运维管理系统,落地难度也较高。那么如何通过数字化手段重塑园区运营,打通园区各业务数据孤…

关闭浏览器窗口弹出提示框(vue项目)

<script> export default {name: App,mounted() { //开发环境不需要提示if (process.env.NODE_ENV development) returnthis.$nextTick(() > {window.addEventListener(beforeunload, this.beforeUnload)})},beforeDestroy() {if (process.env.NODE_ENV development…

生成式AI系列 —— DCGAN生成手写数字

1、模型构建 1.1 构建生成器 # 导入软件包 import torch import torch.nn as nnclass Generator(nn.Module):def __init__(self, z_dim20, image_size256):super(Generator, self).__init__()self.layer1 nn.Sequential(nn.ConvTranspose2d(z_dim, image_size * 32,kernel_s…

「Vue|网页开发|前端开发」01 快速入门:用vue-cli快速写一个Vue的HelloWorld项目

本文主要介绍如何用vue开发的标准化工具vue-cli快速搭建一个符合实际业务项目结构的hello world网页项目并理解vue的代码文件结构以及页面渲染流程。 文章目录 一、准备工作&#xff1a;安装node.js二、项目搭建创建项目目录全局安装vue-cli使用Webpack初始化项目启动项目学会…