《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

image-20240714153919091

image-20240714154002587

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2xlogp(Xt))+dWt,t[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x, the unbiasedness of the denoised image is not guaranteed.

image-20240715221809436

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse

image-20240715201536961

image-20240715212401773
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
target modelDDIMStable Diffusion
version《Are diffusion models vulnerable to membership inference attacks?》original:stable diffusion-v1-5 provided by Huggingface
datasetCIFAR10/100,STL10-Unlabeled,Tiny-Imagenetmember set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T10001000
k10010
baseline methods[5]Are diffusion models vulnerable to membership inference attacks?: SecMIA[18]An efficient membership inference attack for the diffusion model by proximal initialization.[28]Membership inference attacks against diffusion models
publicationInternational Conference on Machine LearningarXiv preprint2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/843186.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二、GD32F407VET6使用定时器点灯

零、所需文件及环境&#xff1a; 1、第一章建立好的LED灯闪烁程序 2、编译环境MDK5(KEIL5) 3、一个GD32F407VET6硬件 4、一个下载器j-link 或 st-link等 5.代码编辑器 Notepad &#xff08;可以不要 用记事本也能编译 都是习惯的问题 壹、复制LED灯闪烁程序 1.1 复制le…

25w的理想L6简约民宿,15W的哪吒L拎包入住

文 | AUTO芯球 作者 | 谦行 25w买理想L6 &#xff1f; 踩坑咯&#xff01;你是没看哪吒L吧&#xff01; 哪吒是杂牌&#xff1f;兄弟&#xff01;买车要动脑子&#xff01; 你先去哪吒店里体验一下&#xff01;肠子都给你悔青&#xff01; 上有老下有小&#xff0c;要精打…

MongoDB教程(十七):MongoDB主键类型ObjectId

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、Object…

Spring AOP(2)原理(代理模式和源码解析)

目录 一、代理模式 二、静态代理 三、动态代理 1、JDK动态代理 &#xff08;1&#xff09;JDK动态代理实现步骤 &#xff08;2&#xff09;定义JDK动态代理类 &#xff08;3&#xff09;代码简单讲解 2、CGLIB动态代理 &#xff08;1&#xff09;CGLIB 动态代理类实现…

Spring系列-04-事件机制,监听器,模块/条件装配

事件机制&监听器 SpringFramework中设计的观察者模式-掌握 SpringFramework 中, 体现观察者模式的特性就是事件驱动和监听器。监听器充当订阅者, 监听特定的事件&#xff1b;事件源充当被观察的主题, 用来发布事件&#xff1b;IOC 容器本身也是事件广播器, 可以理解成观察…

ArcGIS Pro不能编辑ArcGIS10.X的注记的解决办法

​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 点击学习——>遥感影像综合处理4大遥感软件ArcGISENVIErdaseCognition 一、问题 我们利用ArcGIS Pro编辑ArcGIS10.X系列软件生成的注记要素类的时候&#xff0c;会提示不…

FinClip 率先入驻 AWS Marketplace,加速全球市场布局

近日&#xff0c;凡泰极客旗下的小程序数字管理平台 FinClip 已成功上线亚马逊云科技&#xff08;AWS&#xff09;Marketplace。未来&#xff0c;FinClip 将主要服务于海外市场的开放银行、超级钱包、财富管理、社交电商、智慧城市解决方案等领域。 在全球市场的多样性需求推动…

KAFKA搭建教程

KAFKA搭建教程 期待您的关注 KAFKA学习笔记 帮助更多人 目录 KAFKA搭建教程 1.下载Kafka并解压 2.添加环境变量 3.修改 server.properties 文件 4.将kafka复制到其它节点 5.修改node1、node2节点的broker.id 6.将master的环境变量同步到node1、 node2 7.启动zookeeper…

Elasticsearch:评估搜索相关性 - 第 1 部分

作者&#xff1a;来自 Elastic Thanos Papaoikonomou, Thomas Veasey 这是一系列博客文章中的第一篇&#xff0c;讨论如何在更好地理解 BEIR 基准的背景下考虑评估你自己的搜索系统。我们将介绍具体的技巧和技术&#xff0c;以便在更好地理解 BEIR 的背景下改进你的搜索评估流程…

17_高级进程间通信 UNIX域套接字1

非命名的UNIX域套接字 第1个参数domain&#xff0c;表示协议族&#xff0c;只能为AF_LOCAL或者AF_UNIX&#xff1b; 第2个参数type&#xff0c;表示类型&#xff0c;只能为0。 第3个参数protocol&#xff0c;表示协议&#xff0c;可以是SOCK_STREAM或者SOCK_DGRAM。用SOCK_STR…

视觉巡线小车——STM32+OpenMV(三)

目录 前言 一、OpenMV代码 二、STM32端接收数据 1.配置串口 2.接收数据并解析 总结 前言 通过视觉巡线小车——STM32OpenMV&#xff08;二&#xff09;&#xff0c;已基本实现了减速电机的速度闭环控制。要使小车能够自主巡线&#xff0c;除了能够精准的控制速度之外&#xff0…

【BUG】已解决:raise KeyError(key) from err KeyError: (‘name‘, ‘age‘)

已解决&#xff1a;raise KeyError(key) from err KeyError: (‘name‘, ‘age‘) 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xf…

第十课:telnet(远程登入)

如何远程管理网络设备&#xff1f; 只要保证PC和路由器的ip是互通的&#xff0c;那么PC就可以远程管理路由器&#xff08;用telnet技术管理&#xff09;。 我们搭建一个下面这样的简单的拓扑图进行介绍 首先我们点击云&#xff0c;把云打开&#xff0c;点击增加 我们绑定vmn…

idea如何让包结构分层

文章目录 前言1.选中前项目包结构2.取消后项目包结构3.情况二 前言 在大型项目中&#xff0c;代码的分层管理至关重要。IDEA编辑器提供了强大的package分层结构功能&#xff0c;帮助开发者更好地组织和管理代码。通过合理配置&#xff0c;我们可以清晰地看到各个package之间的…

【BUG】已解决:java.lang.reflect.InvocationTargetException

已解决&#xff1a;java.lang.reflect.InvocationTargetException 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xff0c;武汉城市开发…

Mysql-索引结构

一.什么是索引&#xff1f; 索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引 二.无索引的情况 找到…

【效率提升】程序员常用Shell脚本

文章目录 常用Shell脚本一. 定期更新分区数据二、获取系统资源的使用情况 常用Shell脚本 一. 定期更新分区数据 在某些场景下&#xff0c;我们需要对N年前某一分区的数据进行删除&#xff0c;并添加今年该对应分区的数据&#xff0c;实现数据的流动式存储。 #!/bin/bash dt$…

NFT革命:数字资产的确权、营销与元宇宙的未来

目录 1、NFT&#xff1a;数字社会的数据确权制度 2、基于低成本及永久产权的文化发现 3、PFP&#xff1a;从“小图片”到“身份表达”&#xff0c;再到社区筛选 4、透明表达&#xff1a;NFT 在数字化营销中的商业价值 5、可编程性&#xff1a;赋予 NFT 无限可能的应用 5.…

微信被好友屏蔽朋友圈/拉黑/删除?教你几招悄悄验证

微信这一国民级的社交软件&#xff0c;基本上渗入了大家日常生活的方方面面&#xff0c;沟通、支付、购物、娱乐都可以在上面一站式解决。微信功能虽然很全面&#xff0c;但某些功能细节设计也会让人感到困惑&#xff0c;比如我们被朋友拉黑或者删除&#xff0c;微信是不会通知…

C程序优化与指针传址

最近在写程序时遇到了一些问题&#xff0c;记录一下&#xff1a; 开始程序使用全局变量&#xff0c;程序如下&#xff1a;程序的缺点是全局变量的泛滥。 笔者觉得有些不妥&#xff0c;于是将它修改成这样&#xff1a; 使用结构体进行封装&#xff0c;避免了全局变量&#xff0…