人脸老化预测(Python)

本次项目的文件

main.py主程序如下

  1. 导入必要的库和模块:

    • 导入 TensorFlow 库以及自定义的 FaceAging 模块。
    • 导入操作系统库和参数解析库。
  2. 定义 str2bool 函数:

    • 自定义函数用于将字符串转换为布尔值。
  3. 创建命令行参数解析器:

    • 使用 argparse.ArgumentParser 创建解析器,设置命令行参数的相关信息,如是否训练、轮数、数据集名称等。
  4. 主函数 main(_) 入口:

    • 打印设置的参数。
    • 配置 TensorFlow 会话,设置 GPU 使用等。
  5. with tf.Session(config=config) as session 中:

    • 创建 FaceAging 模型实例,传入会话、训练模式标志、保存路径和数据集名称。
  6. 判断是否训练模式:

    • 如果是训练模式,根据参数决定是否使用预训练模型进行训练。
    • 如果不使用预训练模型,执行预训练步骤,并在预训练完成后开始正式训练。
    • 执行模型的训练方法,传入训练轮数等参数。
  7. 如果不是训练模式:

    • 进入测试模式,执行模型的自定义测试方法,传入测试图像目录。
  8. __name__ == '__main__' 中执行程序:

    • 执行命令行参数解析和主函数。
import tensorflow as tf
from FaceAging import FaceAging  # 导入自定义的 FaceAging 模块
from os import environ
import argparse

# 设置环境变量,控制 TensorFlow 输出日志等级
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

# 自定义一个函数用于将字符串转换为布尔值
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

# 创建命令行参数解析器
parser = argparse.ArgumentParser(description='CAAE')
parser.add_argument('--is_train', type=str2bool, default=True, help='是否进行训练')
parser.add_argument('--epoch', type=int, default=50, help='训练的轮数')
parser.add_argument('--dataset', type=str, default='UTKFace', help='存储在./data目录中的训练数据集名称')
parser.add_argument('--savedir', type=str, default='save', help='保存检查点、中间训练结果和摘要的目录')
parser.add_argument('--testdir', type=str, default='None', help='测试图像所在的目录')
parser.add_argument('--use_trained_model', type=str2bool, default=True, help='是否使用已有的模型进行训练')
parser.add_argument('--use_init_model', type=str2bool, default=True, help='如果找不到已有模型,是否从初始模型开始训练')
FLAGS = parser.parse_args()

# 主函数入口
def main(_):

    # 打印设置参数
    import pprint
    pprint.pprint(FLAGS)

    # 配置 TensorFlow 会话
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as session:
        # 创建 FaceAging 模型实例
        model = FaceAging(
            session,  # TensorFlow 会话
            is_training=FLAGS.is_train,  # 是否为训练模式的标志
            save_dir=FLAGS.savedir,  # 保存检查点、样本和摘要的路径
            dataset_name=FLAGS.dataset  # 存储在 ./data 目录中的数据集名称
        )
        if FLAGS.is_train:
            print ('\n\t训练模式')
            if not FLAGS.use_trained_model:
                print ('\n\t预训练网络')
                model.train(
                    num_epochs=10,  # 训练轮数
                    use_trained_model=FLAGS.use_trained_model,
                    use_init_model=FLAGS.use_init_model,
                    weights=(0, 0, 0)
                )
                print ('\n\t预训练完成!训练将开始。')
            model.train(
                num_epochs=FLAGS.epoch,  # 训练轮数
                use_trained_model=FLAGS.use_trained_model,
                use_init_model=FLAGS.use_init_model
            )
        else:
            print ('\n\t测试模式')
            model.custom_test(
                testing_samples_dir=FLAGS.testdir + '/*jpg'
            )

if __name__ == '__main__':
    # 在主程序中执行命令行解析和执行主函数
    tf.app.run()

 

2.FaceAging.py

主要流程

  1. 导入必要的库和模块:

    • 导入所需的Python库,如NumPy、TensorFlow等。
    • 导入自定义的操作(ops.py)。
  2. 定义 FaceAging 类:

    • 在初始化方法中,设置了模型的各种参数,例如输入图像大小、网络层参数、训练参数等,并创建了 TensorFlow 图的输入节点。
    • 定义了图的结构,包括编码器、生成器、判别器等。
    • 定义了损失函数,包括生成器、判别器、总变差(TV)等。
    • 收集了需要用于TensorBoard可视化的摘要信息。
  3. train 方法:

    • 从文件中加载训练数据集的文件名列表。
    • 定义了优化器和损失函数,然后进行模型的训练。
    • 在每个epoch中,随机选择一部分训练图像样本,计算并更新生成器和判别器的参数,输出训练进度等信息。
    • 保存模型的中间检查点,生成样本图像用于可视化,训练结束后保存最终模型。
  4. encoder 方法:

    • 实现了编码器结构,将输入图像转化为对应的噪声或特征。
  5. generator 方法:

    • 实现了生成器结构,将噪声特征、年龄标签和性别标签拼接,生成相应年龄段的人脸图像。
  6. discriminator_zdiscriminator_img 方法:

    • 实现了判别器结构,对输入的噪声特征或图像进行判别。
  7. save_checkpointload_checkpoint 方法:

    • 用于保存和加载训练过程中的模型检查点。
  8. sampletest 方法:

    • 生成一些样本图像以及将训练过程中的中间结果保存为图片。
  9. custom_test 方法:

    • 运行模型进行自定义测试,加载模型并生成特定人脸的年龄化效果。
from __future__ import division
import os
import time
from glob import glob
import tensorflow as tf
import numpy as np
from scipy.io import savemat
from ops import *


class FaceAging(object):
    def __init__(self,
                 session,  # TensorFlow session
                 size_image=128,  # size the input images
                 size_kernel=5,  # size of the kernels in convolution and deconvolution
                 size_batch=100,  # mini-batch size for training and testing, must be square of an integer
                 num_input_channels=3,  # number of channels of input images
                 num_encoder_channels=64,  # number of channels of the first conv layer of encoder
                 num_z_channels=50,  # number of channels of the layer z (noise or code)
                 num_categories=10,  # number of categories (age segments) in the training dataset
                 num_gen_channels=1024,  # number of channels of the first deconv layer of generator
                 enable_tile_label=True,  # enable to tile the label
                 tile_ratio=1.0,  # ratio of the length between tiled label and z
                 is_training=True,  # flag for training or testing mode
                 save_dir='./save',  # path to save checkpoints, samples, and summary
                 dataset_name='UTKFace'  # name of the dataset in the folder ./data
                 ):

        self.session = session
        self.image_value_range = (-1, 1)
        self.size_image = size_image
        self.size_kernel = size_kernel
        self.size_batch = size_batch
        self.num_input_channels = num_input_channels
        self.num_encoder_channels = num_encoder_channels
        self.num_z_channels = num_z_channels
        self.num_categories = num_categories
        self.num_gen_channels = num_gen_channels
        self.enable_tile_label = enable_tile_label
        self.tile_ratio = tile_ratio
        self.is_training = is_training
        self.save_dir = save_dir
        self.dataset_name = dataset_name

        # ************************************* input to graph ********************************************************
        self.input_image = tf.placeholder(
            tf.float32,
            [self.size_batch, self.size_image, self.size_image, self.num_input_channels],
            name='input_images'
        )
        self.age = tf.placeholder(
            tf.float32,
            [self.size_batch, self.num_categories],
            name='age_labels'
        )
        self.gender = tf.placeholder(
            tf.float32,
            [self.size_batch, 2],
            name='gender_labels'
        )
        self.z_prior = tf.placeholder(
            tf.float32,
            [self.size_batch, self.num_z_channels],
            name='z_prior'
        )
        # ************************************* build the graph *******************************************************
        print ('\n\tBuilding graph ...')

        # encoder: input image --> z
        self.z = self.encoder(
            image=self.input_image
        )

        # generator: z + label --> generated image
        self.G = self.generator(
            z=self.z,
            y=self.age,
            gender=self.gender,
            enable_tile_label=self.enable_tile_label,
            tile_ratio=self.tile_ratio
        )

        # discriminator on z
        self.D_z, self.D_z_logits = self.discriminator_z(
            z=self.z,
            is_training=self.is_training
        )

        # discriminator on G
        self.D_G, self.D_G_logits = self.discriminator_img(
            image=self.G,
            y=self.age,
            gender=self.gender,
            is_training=self.is_training
        )

        # discriminator on z_prior
        self.D_z_prior, self.D_z_prior_logits = self.discriminator_z(
            z=self.z_prior,
            is_training=self.is_training,
            reuse_variables=True
        )

        # discriminator on input image
        self.D_input, self.D_input_logits = self.discriminator_img(
            image=self.input_image,
            y=self.age,
            gender=self.gender,
            is_training=self.is_training,
            reuse_variables=True
        )

        # ************************************* loss functions *******************************************************
        # loss function of encoder + generator
        #self.EG_loss = tf.nn.l2_loss(self.input_image - self.G) / self.size_batch  # L2 loss
        self.EG_loss = tf.reduce_mean(tf.abs(self.input_image - self.G))  # L1 loss

        # loss function of discriminator on z
        self.D_z_loss_prior = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_prior_logits, labels=tf.ones_like(self.D_z_prior_logits))
        )
        self.D_z_loss_z = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_logits, labels=tf.zeros_like(self.D_z_logits))
        )
        self.E_z_loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_z_logits, labels=tf.ones_like(self.D_z_logits))
        )
        # loss function of discriminator on image
        self.D_img_loss_input = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_input_logits, labels=tf.ones_like(self.D_input_logits))
        )
        self.D_img_loss_G = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_G_logits, labels=tf.zeros_like(self.D_G_logits))
        )
        self.G_img_loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=self.D_G_logits, labels=tf.ones_like(self.D_G_logits))
        )

        # total variation to smooth the generated image
        tv_y_size = self.size_image
        tv_x_size = self.size_image
        self.tv_loss = (
            (tf.nn.l2_loss(self.G[:, 1:, :, :] - self.G[:, :self.size_image - 1, :, :]) / tv_y_size) +
            (tf.nn.l2_loss(self.G[:, :, 1:, :] - self.G[:, :, :self.size_image - 1, :]) / tv_x_size)) / self.size_batch

        # *********************************** trainable variables ****************************************************
        trainable_variables = tf.trainable_variables()
        # variables of encoder
        self.E_variables = [var for var in trainable_variables if 'E_' in var.name]
        # variables of generator
        self.G_variables = [var for var in trainable_variables if 'G_' in var.name]
        # variables of discriminator on z
        self.D_z_variables = [var for var in trainable_variables if 'D_z_' in var.name]
        # variables of discriminator on image
        self.D_img_variables = [var for var in trainable_variables if 'D_img_' in var.name]

        # ************************************* collect the summary ***************************************
        self.z_summary = tf.summary.histogram('z', self.z)
        self.z_prior_summary = tf.summary.histogram('z_prior', self.z_prior)
        self.EG_loss_summary = tf.summary.scalar('EG_loss', self.EG_loss)
        self.D_z_loss_z_summary = tf.summary.scalar('D_z_loss_z', self.D_z_loss_z)
        self.D_z_loss_prior_summary = tf.summary.scalar('D_z_loss_prior', self.D_z_loss_prior)
        self.E_z_loss_summary = tf.summary.scalar('E_z_loss', self.E_z_loss)
        self.D_z_logits_summary = tf.summary.histogram('D_z_logits', self.D_z_logits)
        self.D_z_prior_logits_summary = tf.summary.histogram('D_z_prior_logits', self.D_z_prior_logits)
        self.D_img_loss_input_summary = tf.summary.scalar('D_img_loss_input', self.D_img_loss_input)
        self.D_img_loss_G_summary = tf.summary.scalar('D_img_loss_G', self.D_img_loss_G)
        self.G_img_loss_summary = tf.summary.scalar('G_img_loss', self.G_img_loss)
        self.D_G_logits_summary = tf.summary.histogram('D_G_logits', self.D_G_logits)
        self.D_input_logits_summary = tf.summary.histogram('D_input_logits', self.D_input_logits)
        # for saving the graph and variables
        self.saver = tf.train.Saver(max_to_keep=2)

    def train(self,
              num_epochs=200,  # number of epochs
              learning_rate=0.0002,  # learning rate of optimizer
              beta1=0.5,  # parameter for Adam optimizer
              decay_rate=1.0,  # learning rate decay (0, 1], 1 means no decay
              enable_shuffle=True,  # enable shuffle of the dataset
              use_trained_model=True,  # use the saved checkpoint to initialize the network
              use_init_model=True,  # use the init model to initialize the network
              weigts=(0.0001, 0, 0)  # the weights of adversarial loss and TV loss
              ):

        # *************************** load file names of images ******************************************************
        file_names = glob(os.path.join('./data', self.dataset_name, '*.jpg'))
        size_data = len(file_names)
        np.random.seed(seed=2017)
        if enable_shuffle:
            np.random.shuffle(file_names)

        # *********************************** optimizer **************************************************************
        # over all, there are three loss functions, weights may differ from the paper because of different datasets
        self.loss_EG = self.EG_loss + weigts[0] * self.G_img_loss + weigts[1] * self.E_z_loss + weigts[2] * self.tv_loss # slightly increase the params
        self.loss_Dz = self.D_z_loss_prior + self.D_z_loss_z
        self.loss_Di = self.D_img_loss_input + self.D_img_loss_G

        # set learning rate decay
        self.EG_global_step = tf.Variable(0, trainable=False, name='global_step')
        EG_learning_rate = tf.train.exponential_decay(
            learning_rate=learning_rate,
            global_step=self.EG_global_step,
            decay_steps=size_data / self.size_batch * 2,
            decay_rate=decay_rate,
            staircase=True
        )

        # optimizer for encoder + generator
        with tf.variable_scope('opt', reuse=tf.AUTO_REUSE):
            self.EG_optimizer = tf.train.AdamOptimizer(
                learning_rate=EG_learning_rate,
                beta1=beta1
            ).minimize(
                loss=self.loss_EG,
                global_step=self.EG_global_step,
                var_list=self.E_variables + self.G_variables
            )

            # optimizer for discriminator on z
            self.D_z_optimizer = tf.train.AdamOptimizer(
                learning_rate=EG_learning_rate,
                beta1=beta1
            ).minimize(
                loss=self.loss_Dz,
                var_list=self.D_z_variables
            )

            # optimizer for discriminator on image
            self.D_img_optimizer = tf.train.AdamOptimizer(
                learning_rate=EG_learning_rate,
                beta1=beta1
            ).minimize(
                loss=self.loss_Di,
                var_list=self.D_img_variables
            )

        # *********************************** tensorboard *************************************************************
        # for visualization (TensorBoard): $ tensorboard --logdir path/to/log-directory
        self.EG_learning_rate_summary = tf.summary.scalar('EG_learning_rate', EG_learning_rate)
        self.summary = tf.summary.merge([
            self.z_summary, self.z_prior_summary,
            self.D_z_loss_z_summary, self.D_z_loss_prior_summary,
            self.D_z_logits_summary, self.D_z_prior_logits_summary,
            self.EG_loss_summary, self.E_z_loss_summary,
            self.D_img_loss_input_summary, self.D_img_loss_G_summary,
            self.G_img_loss_summary, self.EG_learning_rate_summary,
            self.D_G_logits_summary, self.D_input_logits_summary
        ])
        self.writer = tf.summary.FileWriter(os.path.join(self.save_dir, 'summary'), self.session.graph)

        # ************* get some random samples as testing data to visualize the learning process *********************
        sample_files = file_names[0:self.size_batch]
        file_names[0:self.size_batch] = []
        sample = [load_image(
            image_path=sample_file,
            image_size=self.size_image,
            image_value_range=self.image_value_range,
            is_gray=(self.num_input_channels == 1),
        ) for sample_file in sample_files]
        if self.num_input_channels == 1:
            sample_images = np.array(sample).astype(np.float32)[:, :, :, None]
        else:
            sample_images = np.array(sample).astype(np.float32)
        sample_label_age = np.ones(
            shape=(len(sample_files), self.num_categories),
            dtype=np.float32
        ) * self.image_value_range[0]
        sample_label_gender = np.ones(
            shape=(len(sample_files), 2),
            dtype=np.float32
        ) * self.image_value_range[0]
        for i, label in enumerate(sample_files):
            label = int(str(sample_files[i]).split('/')[-1].split('_')[0])
            if 0 <= label <= 5:
                label = 0
            elif 6 <= label <= 10:
                label = 1
            elif 11 <= label <= 15:
                label = 2
            elif 16 <= label <= 20:
                label = 3
            elif 21 <= label <= 30:
                label = 4
            elif 31 <= label <= 40:
                label = 5
            elif 41 <= label <= 50:
                label = 6
            elif 51 <= label <= 60:
                label = 7
            elif 61 <= label <= 70:
                label = 8
            else:
                label = 9
            sample_label_age[i, label] = self.image_value_range[-1]
            gender = int(str(sample_files[i]).split('/')[-1].split('_')[1])
            sample_label_gender[i, gender] = self.image_value_range[-1]

        # ******************************************* training *******************************************************
        # initialize the graph
        tf.global_variables_initializer().run()

        # load check point
        if use_trained_model:
            if self.load_checkpoint():
                print("\tSUCCESS ^_^")
            else:
                print("\tFAILED >_<!")
                # load init model
                if use_init_model:
                    if not os.path.exists('init_model/model-init.data-00000-of-00001'):
                        from init_model.zip_opt import join
                        try:
                            join('init_model/model_parts', 'init_model/model-init.data-00000-of-00001')
                        except:
                            raise Exception('Error joining files')
                    self.load_checkpoint(model_path='init_model')


        # epoch iteration
        num_batches = len(file_names) // self.size_batch
        for epoch in range(num_epochs):
            if enable_shuffle:
                np.random.shuffle(file_names)
            for ind_batch in range(num_batches):
                start_time = time.time()
                # read batch images and labels
                batch_files = file_names[ind_batch*self.size_batch:(ind_batch+1)*self.size_batch]
                batch = [load_image(
                    image_path=batch_file,
                    image_size=self.size_image,
                    image_value_range=self.image_value_range,
                    is_gray=(self.num_input_channels == 1),
                ) for batch_file in batch_files]
                if self.num_input_channels == 1:
                    batch_images = np.array(batch).astype(np.float32)[:, :, :, None]
                else:
                    batch_images = np.array(batch).astype(np.float32)
                batch_label_age = np.ones(
                    shape=(len(batch_files), self.num_categories),
                    dtype=np.float
                ) * self.image_value_range[0]
                batch_label_gender = np.ones(
                    shape=(len(batch_files), 2),
                    dtype=np.float
                ) * self.image_value_range[0]
                for i, label in enumerate(batch_files):
                    label = int(str(batch_files[i]).split('/')[-1].split('_')[0])
                    if 0 <= label <= 5:
                        label = 0
                    elif 6 <= label <= 10:
                        label = 1
                    elif 11 <= label <= 15:
                        label = 2
                    elif 16 <= label <= 20:
                        label = 3
                    elif 21 <= label <= 30:
                        label = 4
                    elif 31 <= label <= 40:
                        label = 5
                    elif 41 <= label <= 50:
                        label = 6
                    elif 51 <= label <= 60:
                        label = 7
                    elif 61 <= label <= 70:
                        label = 8
                    else:
                        label = 9
                    batch_label_age[i, label] = self.image_value_range[-1]
                    gender = int(str(batch_files[i]).split('/')[-1].split('_')[1])
                    batch_label_gender[i, gender] = self.image_value_range[-1]

                # prior distribution on the prior of z
                batch_z_prior = np.random.uniform(
                    self.image_value_range[0],
                    self.image_value_range[-1],
                    [self.size_batch, self.num_z_channels]
                ).astype(np.float32)

                # update
                _, _, _, EG_err, Ez_err, Dz_err, Dzp_err, Gi_err, DiG_err, Di_err, TV = self.session.run(
                    fetches = [
                        self.EG_optimizer,
                        self.D_z_optimizer,
                        self.D_img_optimizer,
                        self.EG_loss,
                        self.E_z_loss,
                        self.D_z_loss_z,
                        self.D_z_loss_prior,
                        self.G_img_loss,
                        self.D_img_loss_G,
                        self.D_img_loss_input,
                        self.tv_loss
                    ],
                    feed_dict={
                        self.input_image: batch_images,
                        self.age: batch_label_age,
                        self.gender: batch_label_gender,
                        self.z_prior: batch_z_prior
                    }
                )

                print("\nEpoch: [%3d/%3d] Batch: [%3d/%3d]\n\tEG_err=%.4f\tTV=%.4f" %
                    (epoch+1, num_epochs, ind_batch+1, num_batches, EG_err, TV))
                print("\tEz=%.4f\tDz=%.4f\tDzp=%.4f" % (Ez_err, Dz_err, Dzp_err))
                print("\tGi=%.4f\tDi=%.4f\tDiG=%.4f" % (Gi_err, Di_err, DiG_err))

                # estimate left run time
                elapse = time.time() - start_time
                time_left = ((num_epochs - epoch - 1) * num_batches + (num_batches - ind_batch - 1)) * elapse
                print("\tTime left: %02d:%02d:%02d" %
                      (int(time_left / 3600), int(time_left % 3600 / 60), time_left % 60))

                # add to summary
                summary = self.summary.eval(
                    feed_dict={
                        self.input_image: batch_images,
                        self.age: batch_label_age,
                        self.gender: batch_label_gender,
                        self.z_prior: batch_z_prior
                    }
                )
                self.writer.add_summary(summary, self.EG_global_step.eval())

            # save sample images for each epoch
            name = '{:02d}.png'.format(epoch+1)
            self.sample(sample_images, sample_label_age, sample_label_gender, name)
            self.test(sample_images, sample_label_gender, name)

            # save checkpoint for each 5 epoch
            if np.mod(epoch, 5) == 4:
                self.save_checkpoint()

        # save the trained model
        self.save_checkpoint()
        # close the summary writer
        self.writer.close()


    def encoder(self, image, reuse_variables=False):
        if reuse_variables:
            tf.get_variable_scope().reuse_variables()
        num_layers = int(np.log2(self.size_image)) - int(self.size_kernel / 2)
        current = image
        # conv layers with stride 2
        for i in range(num_layers):
            name = 'E_conv' + str(i)
            current = conv2d(
                    input_map=current,
                    num_output_channels=self.num_encoder_channels * (2 ** i),
                    size_kernel=self.size_kernel,
                    name=name
                )
            current = tf.nn.relu(current)

        # fully connection layer
        name = 'E_fc'
        current = fc(
            input_vector=tf.reshape(current, [self.size_batch, -1]),
            num_output_length=self.num_z_channels,
            name=name
        )

        # output
        return tf.nn.tanh(current)

    def generator(self, z, y, gender, reuse_variables=False, enable_tile_label=True, tile_ratio=1.0):
        if reuse_variables:
            tf.get_variable_scope().reuse_variables()
        num_layers = int(np.log2(self.size_image)) - int(self.size_kernel / 2)
        if enable_tile_label:
            duplicate = int(self.num_z_channels * tile_ratio / self.num_categories)
        else:
            duplicate = 1
        z = concat_label(z, y, duplicate=duplicate)
        if enable_tile_label:
            duplicate = int(self.num_z_channels * tile_ratio / 2)
        else:
            duplicate = 1
        z = concat_label(z, gender, duplicate=duplicate)
        size_mini_map = int(self.size_image / 2 ** num_layers)
        # fc layer
        name = 'G_fc'
        current = fc(
            input_vector=z,
            num_output_length=self.num_gen_channels * size_mini_map * size_mini_map,
            name=name
        )
        # reshape to cube for deconv
        current = tf.reshape(current, [-1, size_mini_map, size_mini_map, self.num_gen_channels])
        current = tf.nn.relu(current)
        # deconv layers with stride 2
        for i in range(num_layers):
            name = 'G_deconv' + str(i)
            current = deconv2d(
                    input_map=current,
                    output_shape=[self.size_batch,
                                  size_mini_map * 2 ** (i + 1),
                                  size_mini_map * 2 ** (i + 1),
                                  int(self.num_gen_channels / 2 ** (i + 1))],
                    size_kernel=self.size_kernel,
                    name=name
                )
            current = tf.nn.relu(current)
        name = 'G_deconv' + str(i+1)
        current = deconv2d(
            input_map=current,
            output_shape=[self.size_batch,
                          self.size_image,
                          self.size_image,
                          int(self.num_gen_channels / 2 ** (i + 2))],
            size_kernel=self.size_kernel,
            stride=1,
            name=name
        )
        current = tf.nn.relu(current)
        name = 'G_deconv' + str(i + 2)
        current = deconv2d(
            input_map=current,
            output_shape=[self.size_batch,
                          self.size_image,
                          self.size_image,
                          self.num_input_channels],
            size_kernel=self.size_kernel,
            stride=1,
            name=name
        )

        # output
        return tf.nn.tanh(current)

    def discriminator_z(self, z, is_training=True, reuse_variables=False, num_hidden_layer_channels=(64, 32, 16), enable_bn=True):
        if reuse_variables:
            tf.get_variable_scope().reuse_variables()
        current = z
        # fully connection layer
        for i in range(len(num_hidden_layer_channels)):
            name = 'D_z_fc' + str(i)
            current = fc(
                    input_vector=current,
                    num_output_length=num_hidden_layer_channels[i],
                    name=name
                )
            if enable_bn:
                name = 'D_z_bn' + str(i)
                current = tf.contrib.layers.batch_norm(
                    current,
                    scale=False,
                    is_training=is_training,
                    scope=name,
                    reuse=reuse_variables
                )
            current = tf.nn.relu(current)
        # output layer
        name = 'D_z_fc' + str(i+1)
        current = fc(
            input_vector=current,
            num_output_length=1,
            name=name
        )
        return tf.nn.sigmoid(current), current

    def discriminator_img(self, image, y, gender, is_training=True, reuse_variables=False, num_hidden_layer_channels=(16, 32, 64, 128), enable_bn=True):
        if reuse_variables:
            tf.get_variable_scope().reuse_variables()
        num_layers = len(num_hidden_layer_channels)
        current = image
        # conv layers with stride 2
        for i in range(num_layers):
            name = 'D_img_conv' + str(i)
            current = conv2d(
                    input_map=current,
                    num_output_channels=num_hidden_layer_channels[i],
                    size_kernel=self.size_kernel,
                    name=name
                )
            if enable_bn:
                name = 'D_img_bn' + str(i)
                current = tf.contrib.layers.batch_norm(
                    current,
                    scale=False,
                    is_training=is_training,
                    scope=name,
                    reuse=reuse_variables
                )
            current = tf.nn.relu(current)
            if i == 0:
                current = concat_label(current, y)
                current = concat_label(current, gender, int(self.num_categories / 2))
        # fully connection layer
        name = 'D_img_fc1'
        current = fc(
            input_vector=tf.reshape(current, [self.size_batch, -1]),
            num_output_length=1024,
            name=name
        )
        current = lrelu(current)
        name = 'D_img_fc2'
        current = fc(
            input_vector=current,
            num_output_length=1,
            name=name
        )
        # output
        return tf.nn.sigmoid(current), current

    def save_checkpoint(self):
        checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')
        if not os.path.exists(checkpoint_dir):
            os.makedirs(checkpoint_dir)
        self.saver.save(
            sess=self.session,
            save_path=os.path.join(checkpoint_dir, 'model'),
            global_step=self.EG_global_step.eval()
        )

    def load_checkpoint(self, model_path=None):
        if model_path is None:
            print("\n\tLoading pre-trained model ...")
            checkpoint_dir = os.path.join(self.save_dir, 'checkpoint')
        else:
            print("\n\tLoading init model ...")
            checkpoint_dir = model_path
        checkpoints = tf.train.get_checkpoint_state(checkpoint_dir)
        if checkpoints and checkpoints.model_checkpoint_path:
            checkpoints_name = os.path.basename(checkpoints.model_checkpoint_path)
            try:
                self.saver.restore(self.session, os.path.join(checkpoint_dir, checkpoints_name))
                return True
            except:
                return False
        else:
            return False

    def sample(self, images, labels, gender, name):
        sample_dir = os.path.join(self.save_dir, 'samples')
        if not os.path.exists(sample_dir):
            os.makedirs(sample_dir)
        z, G = self.session.run(
            [self.z, self.G],
            feed_dict={
                self.input_image: images,
                self.age: labels,
                self.gender: gender
            }
        )
        size_frame = int(np.sqrt(self.size_batch))
        save_batch_images(
            batch_images=G,
            save_path=os.path.join(sample_dir, name),
            image_value_range=self.image_value_range,
            size_frame=[size_frame, size_frame]
        )

    def test(self, images, gender, name):
        test_dir = os.path.join(self.save_dir, 'test')
        if not os.path.exists(test_dir):
            os.makedirs(test_dir)
        images = images[:int(np.sqrt(self.size_batch)), :, :, :]
        gender = gender[:int(np.sqrt(self.size_batch)), :]
        size_sample = images.shape[0]
        labels = np.arange(size_sample)
        labels = np.repeat(labels, size_sample)
        query_labels = np.ones(
            shape=(size_sample ** 2, size_sample),
            dtype=np.float32
        ) * self.image_value_range[0]
        for i in range(query_labels.shape[0]):
            query_labels[i, labels[i]] = self.image_value_range[-1]
        query_images = np.tile(images, [self.num_categories, 1, 1, 1])
        query_gender = np.tile(gender, [self.num_categories, 1])
        z, G = self.session.run(
            [self.z, self.G],
            feed_dict={
                self.input_image: query_images,
                self.age: query_labels,
                self.gender: query_gender
            }
        )
        save_batch_images(
            batch_images=query_images,
            save_path=os.path.join(test_dir, 'input.png'),
            image_value_range=self.image_value_range,
            size_frame=[size_sample, size_sample]
        )
        save_batch_images(
            batch_images=G,
            save_path=os.path.join(test_dir, name),
            image_value_range=self.image_value_range,
            size_frame=[size_sample, size_sample]
        )

    def custom_test(self, testing_samples_dir):
        if not self.load_checkpoint():
            print("\tFAILED >_<!")
            exit(0)
        else:
            print("\tSUCCESS ^_^")

        num_samples = int(np.sqrt(self.size_batch))
        file_names = glob(testing_samples_dir)
        if len(file_names) < num_samples:
            print ('The number of testing images is must larger than %d' % num_samples)
            exit(0)
        sample_files = file_names[0:num_samples]
        sample = [load_image(
            image_path=sample_file,
            image_size=self.size_image,
            image_value_range=self.image_value_range,
            is_gray=(self.num_input_channels == 1),
        ) for sample_file in sample_files]
        if self.num_input_channels == 1:
            images = np.array(sample).astype(np.float32)[:, :, :, None]
        else:
            images = np.array(sample).astype(np.float32)
        gender_male = np.ones(
            shape=(num_samples, 2),
            dtype=np.float32
        ) * self.image_value_range[0]
        gender_female = np.ones(
            shape=(num_samples, 2),
            dtype=np.float32
        ) * self.image_value_range[0]
        for i in range(gender_male.shape[0]):
            gender_male[i, 0] = self.image_value_range[-1]
            gender_female[i, 1] = self.image_value_range[-1]

        self.test(images, gender_male, 'test_as_male.png')
        self.test(images, gender_female, 'test_as_female.png')

        print ('\n\tDone! Results are saved as %s\n' % os.path.join(self.save_dir, 'test', 'test_as_xxx.png'))

 3.data,一共23708张照片 

 4.对数据集感兴趣的可以关注

from __future__ import division
import os
import time
from glob import glob
import tensorflow as tf
import numpy as np
from scipy.io import savemat
from ops import *

#https://mbd.pub/o/bread/ZJ2UmJpp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/83419.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

系统架构设计专业技能 · 系统工程与系统性能

系列文章目录 系统架构设计专业技能 网络技术&#xff08;三&#xff09; 系统架构设计专业技能 系统安全分析与设计&#xff08;四&#xff09;【系统架构设计师】 系统架构设计高级技能 软件架构设计&#xff08;一&#xff09;【系统架构设计师】 系统架构设计高级技能 …

云服务器-Docker容器-系统搭建部署

一、引言 最近公司在海外上云服务器&#xff0c;作者自己也搞了云服务器去搭建部署系统&#xff0c;方便了解整体架构和系统的生命周期&#xff0c;排查解决问题可以从原理侧进行分析实验。虽然用的云不是同一个&#xff0c;但是原理都是相通的。 二、选型 作者选用的是腾讯云…

ONNX版本YOLOV5-DeepSort (rknn版本已经Ready)

目录 1. 前言 2. 储备知识 3. 准备工作 4. 代码修改的地方 5.结果展示 1. 前言 之前一直在忙着写文档&#xff0c;之前一直做分类&#xff0c;检测和分割&#xff0c;现在看到跟踪算法&#xff0c;花了几天时间找代码调试&#xff0c;看了看&#xff0c;展示效果比单纯的检…

Vulnhub: ICMP: 1靶机

kali&#xff1a;192.168.111.111 靶机&#xff1a;192.168.111.208 信息收集 端口扫描 nmap -A -sC -v -sV -T5 -p- --scripthttp-enum 192.168.111.208 80端口的cms为Monitorr 1.7.6m 搜索发现该版本的cms存在远程代码执行 searchsploit monitorr 漏洞利用 nc本地监听&…

深度学习1:通过模型评价指标优化训练

P(Positive)表示预测为正样本&#xff0c;N(negative)表示预测为负样本&#xff0c;T(True)表示预测正确,F(False)表示预测错误。 TP&#xff1a;正样本预测正确的数量&#xff08;正确检测&#xff09; FP&#xff1a;负样本预测正确数量&#xff08;误检测&#xff09; TN…

拥塞控制(TCP限制窗口大小的机制)

拥塞控制机制可以使滑动窗口在保证可靠性的前提下&#xff0c;提高传输效率 关于滑动窗口的属性以及部分机制推荐看TCP中窗口和滑动窗口的含义以及流量控制 拥塞控制出现的原因 看了上面推荐的博客我们已经知道了&#xff0c;由于接收方接收数据的能力有限&#xff0c;所以要通…

Android音视频剪辑器自定义View实战!

Android音视频剪辑器自定义View实战&#xff01; - 掘金 /*** Created by zhouxuming on 2023/3/30** descr 音视频剪辑器*/ public class AudioViewEditor extends View {//进度文本显示格式-数字格式public static final int HINT_FORMAT_NUMBER 0;//进度文本显示格式-时间…

Go语言基础之切片

切片 切片&#xff08;Slice&#xff09;是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封装。它非常灵活&#xff0c;支持自动扩容。 切片是一个引用类型&#xff0c;它的内部结构包含地址、长度和容量。切片一般用于快速地操作一块数据集合 切片的定义…

【简单认识Docker网络管理】

文章目录 一、Docker 网络实现原理二、Docker 的网络模式1.四种网络模式2.各网络模式详解&#xff08;1&#xff09;Host模式&#xff08;2&#xff09;Container模式&#xff08;3&#xff09;None模式&#xff08;4&#xff09;Bridge模式 3.指定容器网络模式4.自定义网络模式…

【力扣】77. 组合 <回溯、回溯剪枝>

目录 【力扣】77. 组合题解回溯回溯法三步剪枝优化 【力扣】77. 组合 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。你可以按任何顺序返回答案。 示例 1&#xff1a; 输入&#xff1a;n 4, k 2 输出&#xff1a; [[2,4],[3,4],[2,3],[1,2]…

中睿天下受邀参加第六届电力信息通信新技术大会并发表主题演讲

2023年8月9-11日&#xff0c;中国电力企业联合会科技开发服务中心以“加快数字化转型助力新型电力系统建设”为主题&#xff0c;在杭州举办2023年&#xff08;第六届&#xff09;电力信息通信新技术大会暨数字化发展论坛。 大会旨在加快推进“双碳”目标下的新型能源体系和新型…

复合 类型

字符串和切片 切片 切片的作用是允许你引用集合中部分连续的元素序列&#xff0c;而不是引用整个集合。 例如&#xff1a; let s String::from("hello world");let hello &s[0..5]; // 切片 [0,5) 等效于&s[..5] let world &s[6..11]; // 切片…

Python学习 -- 类对象从创建到常用函数

在Python编程中&#xff0c;类是一种强大的工具&#xff0c;用于创建具有共同属性和行为的对象。本篇博客将详细介绍Python中类和对象的创建&#xff0c;类的属性和方法&#xff0c;以及一些常用的类函数&#xff0c;通过丰富的代码例子来帮助读者深入理解。 一、类和对象的创…

STM32设置为I2C从机模式(HAL库版本)

STM32设置为I2C从机模式&#xff08;HAL库版本&#xff09; 目录 STM32设置为I2C从机模式&#xff08;HAL库版本&#xff09;前言1 硬件连接2 软件编程2.1 步骤分解2.2 测试用例 3 运行测试3.1 I2C连续写入3.2 I2C连续读取3.3 I2C单次读写测试 4 总结 前言 我之前出过一篇关于…

AI 绘画Stable Diffusion 研究(十)sd图生图功能详解-精美二维码的制作

免责声明: 本案例所用安装包免费提供&#xff0c;无任何盈利目的。 大家好&#xff0c;我是风雨无阻。 为了让大家更直观的了解图生图功能&#xff0c;明白图生图功能到底是干嘛的&#xff0c;能做什么事情&#xff1f;今天我们继续介绍图生图的实用案例-精美二维码的制作。 对…

倒计时动效

1. 效果 2. html <div class"count"><span>3</span><span>2</span><span>1</span> </div>3. css body {width: 100vw;height: 100vh;overflow: hidden;display: flex;justify-content: center;align-items: cente…

【Apollo】阿波罗自动驾驶技术:引领汽车行业革新

前言 Apollo (阿波罗)是一个开放的、完整的、安全的平台&#xff0c;将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统&#xff0c;快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、…

iTOP-RK3568开发板ubuntu环境下安装Eclipse

eclipse 是使用 Java 语言开发的&#xff0c;一个 Java 应用程序&#xff0c;这意味着 eclipse 只能运行在 Java虚拟机上。倘若没有安装 JDK&#xff08;Java Development Kit&#xff09;&#xff0c;即使在 ubuntu 上安装了 eclipse&#xff0c;也不能运行&#xff0c;所以要…

fastgpt构建镜像

1.把client目录复制到服务器 .next和node_modules文件夹不用上传到服务器 在服务器目录运行 docker build -t fastgpt:1.0.3 . 构建服务 再运行 docker ps 就可以看到容器了

easyexcel合并单元格底色

一、效果图 二、导出接口代码 PostMapping("selectAllMagicExport")public void selectAllMagicExport(HttpServletRequest request, HttpServletResponse response) throws IOException {ServiceResult<SearchResult<TestMetLineFe2o3Export>> result …