博弈论 | 斐波那契博弈

斐波那契博弈

博弈论是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜目标的理论。博弈论是研究互动决策的理论。博弈可以分析自己与对手的利弊关系,从而确立自己在博弈中的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到取胜的目的。

博弈论是研究互动决策的理论,它涉及到两个或多个参与者在平等的对局中利用对方的策略来改变自己的对抗策略,以达到取胜的目标。博弈论可以帮助对弈者分析局势,确定自己在博弈中的优势,并采取相应的策略,最终实现取胜的目的。

博弈论的应用非常广泛,它在经济学、政治学、生物学、计算机科学等领域都有重要的应用。通过博弈论的分析,人们可以更好地理解和预测各种决策情境下的行为和结果,从而做出更明智的决策。

在博弈论中,常见的概念包括博弈的参与者、策略、收益和均衡等。不同的博弈模型和解决方法可以用来研究不同类型的博弈情境,例如零和博弈、合作博弈、非合作博弈等。

总之,博弈论为我们提供了一种分析和理解互动决策的工具,帮助我们在各种情境下制定最优的策略,以实现自己的目标。
两人轮流从一堆物品中取物品,先手最少取一个,至多无上限,但不能把物品取完,之后每次取的物品数不能超过上次取的物品数的二倍且至少为一件,取走最后一件物品的人获胜。

结论:先手胜当且仅当 n 不是斐波那契数(n 为物品总数)。

模拟过程

#include <stdio.h>

int main() {
    int totalItems = 1010; // 初始物品数量
    int currentPlayer = 1; // 当前玩家,1表示先手玩家,2表示后手玩家

    while (totalItems > 0) {
        int maxItems = totalItems; // 每次取的物品数的上限
        int numItems; // 当前玩家取的物品数

        if (currentPlayer == 1) {
            printf("先手玩家,请输入取的物品数(1-%d):", maxItems);
            scanf("%d", &numItems);
        } else {
            printf("后手玩家,请输入取的物品数(1-%d):", maxItems);
            scanf("%d", &numItems);
        }

        // 验证输入的物品数是否合法
        if (numItems < 1 || numItems > maxItems) {
            printf("输入的物品数不合法,请重新输入。\n");
            continue;
        }

        // 更新剩余物品数量
        totalItems -= numItems;

        // 切换玩家
        currentPlayer = (currentPlayer == 1) ? 2 : 1;
    }

    // 最后取走物品的玩家获胜
    int winner = (currentPlayer == 1) ? 2 : 1;
    printf("最后取走物品的玩家是:%d\n", winner);

    return 0;
}

上述代码使用了一个循环来模拟两人轮流取物品的过程。在每一轮中,根据当前玩家的不同,程序会提示玩家输入取的物品数,并进行合法性验证。然后更新剩余物品数量,并切换到下一个玩家。当剩余物品数量为0时,游戏结束,最后取走物品的玩家获胜。

请注意,上述代码只是一个简单的示例,没有包含输入错误处理和边界情况的处理。在实际应用中,可能需要添加更多的代码来处理这些情况。

C++算法实现

#include <iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int N=10010;
int f[N];
void Init(){
    f[0]=f[1]=1;
    for(int i=2;i<N;i++){
        f[i]=f[i-1]+f[i-2];
    }
}
int main()
{
    Init();
    int n;
    while(cin>>n){
        if(n==0) break;
        bool flag=0;
        for(int i=0;i<N;i++){
            if(f[i]==N){
                flag=1;
                break;
            }
        }
        if(flag) puts("Second win");
        else puts("First win");
    }
    return 0;
}

在Python中,迭代器(Iterator)是一种对象,它可以用于遍历可迭代对象(Iterable)。可迭代对象是指那些可以被迭代的对象,比如列表、元组、字符串等。

迭代器对象必须实现两个方法:

  1. __iter__():返回迭代器对象自身。该方法在迭代开始之前被调用,用于返回迭代器对象本身。
  2. __next__():返回可迭代对象的下一个值。如果没有下一个值可返回,就会引发StopIteration异常。

通过使用迭代器,我们可以逐个访问可迭代对象的元素,而无需事先获取它们的全部内容。这样可以节省内存空间,并且适用于处理大型数据集。

以下是一个迭代器的示例代码,演示如何自定义一个简单的迭代器来迭代一个列表中的元素:

class MyIterator:
    def __init__(self, iterable):
        self.iterable = iterable
        self.index = 0

    def __iter__(self):
        return self

    def __next__(self):
        if self.index < len(self.iterable):
            value = self.iterable[self.index]
            self.index += 1
            return value
        else:
            raise StopIteration

# 创建一个列表
my_list = [1, 2, 3, 4, 5]

# 创建一个迭代器对象
my_iterator = MyIterator(my_list)

# 使用迭代器遍历列表元素
for item in my_iterator:
    print(item)

上述代码定义了一个名为MyIterator的迭代器类,它接受一个可迭代对象作为参数,并实现了__iter____next__方法。通过在迭代器对象上使用for循环,我们可以依次访问列表中的元素,并将其打印出来。

需要注意的是,一旦迭代器对象到达可迭代对象的末尾,再次调用__next__方法将引发StopIteration异常,表示迭代结束。

以下是使用MATLAB实现两人轮流从一堆物品中取物品的代码示例:

totalItems = 10; % 初始物品数量
currentPlayer = 1; % 当前玩家,1表示先手玩家,2表示后手玩家

while totalItems > 0
    maxItems = totalItems; % 每次取的物品数的上限
    
    if currentPlayer == 1
        numItems = input(sprintf('先手玩家,请输入取的物品数(1-%d):', maxItems));
    else
        numItems = input(sprintf('后手玩家,请输入取的物品数(1-%d):', maxItems));
    end
    
    % 验证输入的物品数是否合法
    if numItems < 1 || numItems > maxItems
        disp('输入的物品数不合法,请重新输入。');
        continue;
    end
    
    % 更新剩余物品数量
    totalItems = totalItems - numItems;
    
    % 切换玩家
    currentPlayer = mod(currentPlayer, 2) + 1;
end

% 最后取走物品的玩家获胜
winner = mod(currentPlayer, 2) + 1;
fprintf('最后取走物品的玩家是:%d\n', winner);

上述代码使用了一个循环来模拟两人轮流取物品的过程。在每一轮中,根据当前玩家的不同,程序会提示玩家输入取的物品数,并进行合法性验证。然后更新剩余物品数量,并切换到下一个玩家。当剩余物品数量为0时,游戏结束,最后取走物品的玩家获胜。

请注意,上述代码只是一个简单的示例,没有包含输入错误处理和边界情况的处理。在实际应用中,可能需要添加更多的代码来处理这些情况。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/82033.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PHP酒店点菜管理系统mysql数据库web结构apache计算机软件工程网页wamp

一、源码特点 PHP 酒店点菜管理系统是一套完善的web设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 代码下载 https://download.csdn.net/download/qq_41221322/88232051 论文 https://…

【100天精通python】Day42:python网络爬虫开发_HTTP请求库requests 常用语法与实战

目录 1 HTTP协议 2 HTTP与HTTPS 3 HTTP请求过程 3.1 HTTP请求过程 3.2 GET请求与POST请求 3.3 常用请求报头 3.4 HTTP响应 4 HTTP请求库requests 常用语法 4.1 发送GET请求 4.2 发送POST请求 4.3 请求参数和头部 4.4 编码格式 4.5 requests高级操作-文件上传 4.6 …

UGUI可视化组件Image, RawImage

一.组件Image 1.1 Image的属性 创建的Image对象自带Image组件&#xff0c;用来显示图片&#xff0c;其属性说明如下 属性&#xff1a;功能&#xff1a;Source Image表示要显示的图像的纹理&#xff08;必须作为精灵导入&#xff09;。Color要应用于图像的颜色&#xff0c;会和…

【NetCore】09-中间件

文章目录 中间件&#xff1a;掌控请求处理过程的关键1. 中间件1.1 中间件工作原理1.2 中间件核心对象 2.异常处理中间件:区分真异常和逻辑异常2.1 处理异常的方式2.1.1 日常错误处理--定义错误页的方法2.1.2 使用代理方法处理异常2.1.3 异常过滤器 IExceptionFilter2.1.4 特性过…

更安全,更高效的自学网络安全与黑客技术

学习网络安全&#xff08;黑客技术&#xff09; 网络安全是&#xff1a;黑客技术是&#xff1a;网络安全与黑客技术的关系&#xff1a;自学网络安全学习的误区和陷阱&#xff1a;学习网络安全前期需要准备...学习网络安全中期大致步骤&#xff1a;学习网络安全推荐的学习资料&a…

电商增强现实3D模型优化需要关注的4个方面

到目前为止&#xff0c;AR技术已经发展到足以在更广泛的范围内实施。 在电子商务中&#xff0c;这项技术有望提供更令人兴奋的购物体验。 为了实现这一目标&#xff0c;在这篇博客中&#xff0c;我将介绍如何针对电子商务中的 AR 优化 3D 模型。 推荐&#xff1a;用 NSDT编辑器…

SpringBoot 学习(03): 弱语言的注解和SpringBoot注解的异同

弱语言代表&#xff1a;Hyperf&#xff0c;一个基于 PHP Swoole 扩展的常驻内存框架 注解概念的举例说明&#xff1b; 说白了就是&#xff0c;你当领导&#xff0c;破烂事让秘书帮你去安排&#xff0c;你只需要批注一下&#xff0c;例如下周要举办一场活动&#xff0c;秘书将方…

ARM体系结构学习笔记:任何算法可通过下面的三种模式组合而成

任何算法可通过下面的三种模式组合而成 条件跳转和无条件跳转 条件命名规则 关于比较的一些哲学问题 汇编实现if else [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-R8R5cYTQ-1692236026691)(https://cdn.jsdelivr.net/gh/nzcv/picgo/202201172242…

数据结构——B-树、B+树、B*树

一、B-树 1. B-树概念 B树是一种适合外查找的、平衡的多叉树。一棵m阶&#xff08;m>2&#xff09;的B树&#xff0c;是一棵平衡的M路平衡搜索树&#xff0c;它可以是空树或满足以下性质&#xff1a; &#xff08;1&#xff09;根节点至少有两个孩子。 &#xff08;2&#…

Redisson实现分布式锁示例

一、引入依赖 <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.16.0</version></dependency>二、配置类 import org.redisson.Redisson; import org.redisson.api.RedissonClient;…

axios使用axiosSource.cancel取消请求后怎么恢复请求,axios取消请求和恢复请求实现

在前端做大文件分片上传&#xff0c;或者其它中断请求时&#xff0c;需要暂停或重新请求&#xff0c;比如这里大文件上传时&#xff0c;可能会需要暂停、继续上传&#xff0c;如下GIF演示&#xff1a; 这里不详细说文件上传的处理和切片细节&#xff0c;后续有时间在出一篇&a…

基于 Vercel TiDB Serverless 的 chatbot

作者&#xff1a; shiyuhang0 原文来源&#xff1a; https://tidb.net/blog/7b5fcdc9 # 前言 TiDB Serverless 去年就有和 Vercel 的集成了&#xff0c;同时还有一个 bookstore template 方便大家体验。但个人感觉 bookstore 不够炫酷&#xff0c;借 2023 TiDB hackthon 的…

【Redis】什么是缓存穿透,如何预防缓存穿透?

【Redis】什么是缓存穿透&#xff0c;如何预防缓存穿透&#xff1f; 缓存穿透是指查询一个一定不存在的数据&#xff0c;由于缓存中不存在&#xff0c;这时会去数据库查询查不到数据则不写入缓存&#xff0c;这将导致这个不存在的数据每次请求都要到数据库去查询&#xff0c;这…

上海亚商投顾盘:沪指震荡反弹 机器人概念股掀涨停潮

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 市场情绪 三大指数今日震荡反弹&#xff0c;科创50盘中涨超1%。机器人概念股掀涨停潮&#xff0c;通力科技、昊志机电、哈焊…

[mysql系列] mysql 数据库如何实现事务回滚

这里写自定义目录标题 一、事务回滚二、mysql InnoDB引擎如何实现回滚操作2.1 InnoDB引擎的 undo log2.2 具体实现2.2.1 insert 操作2.2.2 delete 操作2.2.3 update 操作 主要参考资料为&#xff1a;《Mysql 是怎样运行的》 一、事务回滚 根据原子性的定义&#xff0c;一个事务…

AVL树的讲解

算法拾遗三十八AVL树 AVL树AVL树平衡性AVL树加入节点AVL删除节点AVL树代码 AVL树 AVL树具有最严苛的平衡性&#xff0c;&#xff08;增、删、改、查&#xff09;时间复杂度为O&#xff08;logN&#xff09;&#xff0c;AVL树任何一个节点&#xff0c;左树的高度和右树的高度差…

【操作系统】虚拟内存相关分段分页页面置换算法

虚拟内存是什么&#xff1f; 【进程地址空间虚拟地址空间C/C程序地址空间就是那个4G的空间】 虚拟内存是操作系统内核为了对进程地址空间进行管理&#xff0c;而设计的一个逻辑意义上的内存空间概念。在程序运行过程中&#xff0c;虚拟内存中需要被访问的部分会被映射到物理内…

JVM元空间溢出的排除思路

背景&#xff1a; java的应用我们为了防止元空间的无限扩展&#xff0c;一般都会设置MaxMetaSpace参数&#xff0c;一般来说只要这个值是512M或者1G左右就足够了&#xff0c;不过今天遇到一个meta空间溢出问题&#xff0c;简单记录下排除的思路 meta元空间溢出 最开始的现象…

ARM--day6(实现字符、字符串收发的代码和现象,分析RCC、GPIO、UART章节)

uart4.h #ifndef __UART4_H__ #define __UART4_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC/GPIO/UART4章节初始化 void hal_uart4_init();//发送一个字符函数 void hal_put_char(const c…

简单理解Linux中的一切皆文件

一款操作系统要管理各种各样不同的硬件&#xff0c;因为硬件的不同所以它们使用的文件系统也不同。但是按道理来说&#xff0c;文件系统的不同对于用户来说可不是一件好事&#xff0c;操作不同的硬件就要使用不同的方法。 但是Linux有一切皆文件。 简单来说&#xff0c;Linux…