分布式唯一ID实战

目录

    • 一、UUID
    • 二、数据库方式
      • 1、数据库生成之简单方式
      • 2、数据库生成 - 多台机器和设置步长,解决性能问题
      • 3、Leaf-segment 方案实现
      • 4、双 buffer 优化
      • 5、Leaf高可用容灾
    • 三、基于Redis实现分布式ID
    • 四、雪花算法
      • 1、雪花算法介绍
      • 2、 雪花算法生产环境架构:
      • 3、==雪花算法的时钟回拨问题==
      • 4、美团 Leaf-snowflake 方案

一、UUID

UUID的标准形式包含32个16进制数字,以 “ - ” 进行分割,形式为 8-4-4-4-12的32个字符,实例
550e8400-e29b-41d4-a716-446655440000。

优点:
- 性能高,本地生成,没有网络消耗

缺点:
- 不易存储,长度太长,32个16进制数字,128位
- 不安全,会暴露MAC地址
- UUID作为MySQL主键,会导致索引页分页,插入慢;长度太长,导致每个索引页存放的索引变少,索引效率降低


二、数据库方式

1、数据库生成之简单方式

利用给字段设置auto_increment_increment和auto_increment_offset来保证ID自增,每次业务使用下列SQL读写MySQL得到ID号作为业务的唯一ID

begin;
// 如果表中存在相同的数据,则将表中的数据删除,然后重新插入一条数据
2 REPLACE INTO Tickets64 (stub) VALUES ('a');
3 SELECT LAST_INSERT_ID();
4 commit;

在这里插入图片描述

优点:

  • 非常简单,利用现有数据库系统的功能实现,成本小
  • ID单调递增,可以实现一些对ID有特殊要求的业务

缺点

  • 强依赖DB,当DB异常时,整个系统不可使用,属于致命问题。应该配置主从复制以尽可能增加可用性(但是主从切换时可能会导致重复发号)
  • ID发号,性能瓶颈限制在单台MySQL的读写性能

2、数据库生成 - 多台机器和设置步长,解决性能问题

在分布式系统中我们可以多部署几台机器,每台机器设置不同的初始值,且步长和机器数相等

比如有两台机器。设置步长step为2,TicketServer1的初始值为1(1,3,5,7,9,11…)、TicketServer2的初始值为2(2,4,6,8,10…)

假设我们要部署N台机器,步长需设置为N,每台的初始值依次为0,1,2…N-1那么整个架构就变成了如下图所示:
在这里插入图片描述

这种架构貌似能够满足性能的需求,但有以下几个缺点:

  • 系统水平扩展比较困难,比如定义好了步长和机器台数之后,如果要添加机器该怎么
    做?假设现在只有一台机器发号是1,2,3,4,5(步长是1),这个时候需要扩容机器一台。可
    以这样做:把第二台机器的初始值设置得比第一台超过很多,比如14(假设在扩容时间之
    内第一台不可能发到14),同时设置步长为2,那么这台机器下发的号码都是14以后的偶
    数。然后摘掉第一台,把ID值保留为奇数,比如7,然后修改第一台的步长为2。让它符合
    我们定义的号段标准,对于这个例子来说就是让第一台以后只能产生奇数。扩容方案看起来
    复杂吗?貌似还好,现在想象一下如果我们线上有100台机器,这个时候要扩容该怎么做?
    简直是噩梦。所以系统水平扩展方案复杂难以实现。

  • ID没有了单调递增的特性,只能趋势递增,这个缺点对于一般业务需求不是很重要,可以容忍

  • 数据库压力还是很大,每次获取ID都得读写一次数据库,只能靠堆机器来提高性能

3、Leaf-segment 方案实现

Leaf-segment方案,在使用数据库的方案上,做了如下改变:

  • 原方案每次获取ID都得读写一次数据库,造成数据库压力大
  • 改为利用批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力
  • 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。
    如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

数据库表设计如下
在这里插入图片描述
重要字段说明:

  • biz_tag用来区分业务
  • max_id表示该biz_tag目前所被分配的ID号段的最大值
  • step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step

系统架构
在这里插入图片描述


优缺点:
优点:

  • 将分配ID的压力由数据库转移到web服务(Leaf), Leaf服务可以很方便的进行线程扩展,性能完全能够支撑大多数业务场景
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务
  • 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全
  • TP999数据波动大(当一个号段的ID使用完全后,leaf服务去mysql取号段,在此过程中应用服务如果有很大的并发过来,就会导致没有ID进行分配,从而导致响应时间变长,出现尖刺)
  • DB宕机的话,整个系统不可使用

4、双 buffer 优化

对于第二个缺点(响应存在峰值),Leaf-segment做了一些优化,简单的说就是:

Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。

为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。

在这里插入图片描述

采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复

每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响



5、Leaf高可用容灾

对于第三点“DB可用性”问题,我们目前采用一主两从的方式,同时分机房部署,Master和Slave之间采用半同步方式同步数据

这里,我其实是没怎么听懂的 !即使使用了主从,在数据同步过程不是还会有ID重复吗

在这里插入图片描述



三、基于Redis实现分布式ID



四、雪花算法

1、雪花算法介绍

Snowflake,雪花算法是由Twitter开源的分布式ID生成算法,以划分命名空间的方式将64-bit位分割成多个部分,每个部分代表不同的含义。而 Java中64bit的整数是Long类型,所以在 Java 中 SnowFlake 算法生成的 ID 就是 long 来存储的。
在这里插入图片描述

  • 第1位:占用1bit,第一位为符号位,不使用。
  • 第1部分:41位的时间戳,41-bit位可表示2^41个数,每个数代表毫秒,那么雪花算法可
    用的时间年限是(2^41)/(1000606024365)=69 年的时间
  • 第2部分:10-bit位可表示机器数,即2^10 = 1024台机器,通常不会部署这么多台机器。也可以划分为多个(比如前5位可以作为机房ID 0-31个机房,后5位作为每个机房的机器ID)
  • 第3部分:12-bit位是自增序列,可表示2^12 = 4096个数。

41位时间戳是固定的,时间戳转二进制的长度是41位,后面两个部分都可以灵活调正,只要注意后面位运算的位数就行

2、 雪花算法生产环境架构:

在这里插入图片描述

3、雪花算法的时钟回拨问题

回拨时间很短( <= 100ms)
让当前循环一段时间进行等待

回拨时间适中 (100ms < < 1s)
在内存中维护最近 每个 1ms 内的最大值

回拨时间较长 (1s < <= 5s)
结合雪花算法生产环境架构,当客户端段捕获到时钟回拨异常后,由客户端进行重试

时钟回拨时间很长 (> 5s)
直接将出问题的机器下线,然后发送短信告诉运维人员,这台机器出现问题



4、美团 Leaf-snowflake 方案

Leaf-snowflake方案完全沿用snowflake方案的bit位设计,即“1+41+10+12”的方式组装ID号。对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。

Leafsnowflake是按照下面几个步骤启动的:

  1. 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  2. 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  3. 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务

在这里插入图片描述

解决时钟问题
因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

这一部分暂时没看懂,等会回来补充下!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80448.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2017年3月全国计算机等级考试真题(C语言二级)

2017年3月全国计算机等级考试真题&#xff08;C语言二级&#xff09; 第1题 每个学校有一名校长&#xff0c;且不同学校的校长可以是同一人&#xff0c;则实体学校和实体校长间的联系是 A. 多对一 B. 多对多 C. 一对一 D. 一对多 正确答案&#xff1a;A 第2题 若有以下定义…

【数理知识】三维空间旋转矩阵的欧拉角表示法,四元数表示法,两者之间的转换,Matlab 代码实现

序号内容1【数理知识】自由度 degree of freedom 及自由度的计算方法2【数理知识】刚体 rigid body 及刚体的运动3【数理知识】刚体基本运动&#xff0c;平动&#xff0c;转动4【数理知识】向量数乘&#xff0c;内积&#xff0c;外积&#xff0c;matlab代码实现5【数理知识】最…

MySQL表的操作

MySQL表的操作 创建表查看表结构的详细信息修改表结构增加表结构属性删除表结构表结构的修改 删除表结构 创建表 语法: create table table_name( field1 datatype [comment xxxxx], field2 datatype [comment xxxxx], field3 datatype [comment xxxxx]) [charsetxxx][collatey…

vscode搭建java开发环境

一、配置extensions环境变量VSCODE_EXTENSIONS 该环境变量路径下的存放安装组件&#xff1a; 二、setting配置文件 {"java.jdt.ls.java.home": "e:\\software\\jdk\\jdk17",// java运行环境"java.configuration.runtimes": [{"name":…

记一次fegin调用的媒体类型问题

1.问题&#xff1a;分页查询&#xff0c;分页参数传递不生效 2.开发环境&#xff1a;fegin接口 开发环境&#xff1a;调用接口 3.修改后&#xff1a;fegin接口不变 调用接口 前端媒体类型&#xff1a; 问题解决&#xff01;&#xff01;&#xff01; 4.原因分析&…

基于libevent的tcp服务器

libevent使用教程_evutil_make_socket_nonblocking_易方达蓝筹的博客-CSDN博客 一、准备 centos7下安装libevent库 yum install libevent yum install -y libevent-devel 二、代码 server.cpp /** You need libevent2 to compile this piece of code Please see: http://li…

架构演进及常用架构

1架构演进及常用架构 1.1单体分层架构 1.2 多应用微服务架构 1.3 分布式集群部署 部署 CDN 节点&#xff1a; 用户访问量的增加意味着用户地域的分散请求&#xff0c;如果所有请求都直接发送中心服务器的话&#xff0c;距离越远&#xff0c;响应速度越差&#xff0c;这时就需…

C语言:深度学习知识储备

目录 数据类型 每种类型的大小是多少呢&#xff1f; 变量 变量的命名&#xff1a; 变量的分类&#xff1a; 变量的作用域和生命周期 作用域&#xff1a; 生命周期&#xff1a; 常量 字符串转义字符注释 字符串&#xff1a; 转义字符 操作符&#xff1a; 算术操作符…

208、仿真-51单片机脉搏心率与心电报警Proteus仿真设计(程序+Proteus仿真+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、硬件设计 二、设计功能 三、Proteus仿真图 四、程序源码 资料包括&#xff1a; 需要完整的资料可以点击下面的名片加下我&#xff0c;找我要资源压缩包的百度网盘下载地址及提取码。 方案选择 单片机的选择 方案一&a…

理解持续测试,才算理解DevOps

软件产品的成功与否&#xff0c;在很大程度上取决于对市场需求的及时把控&#xff0c;采用DevOps可以加快产品交付速度&#xff0c;改善用户体验&#xff0c;从而有助于保持领先于竞争对手的优势。 作为敏捷开发方法论的一种扩展&#xff0c;DevOps强调开发、测试和运维不同团…

机器学习重要内容:特征工程之特征抽取

目录 1、简介 2、⭐为什么需要特征工程 3、特征抽取 3.1、简介 3.2、特征提取主要内容 3.3、字典特征提取 3.4、"one-hot"编码 3.5、文本特征提取 3.5.1、英文文本 3.5.2、结巴分词 3.5.3、中文文本 3.5.4、Tf-idf ⭐所属专栏&#xff1a;人工智能 文中提…

衣服材质等整理(时常更新)

参考文章&图片来源 https://zhuanlan.zhihu.com/p/390341736 00. 天然纤维 01. 化学纤维 02. 聚酯纤维&#xff08;即&#xff0c;涤纶&#xff09; 一种由有机二元酸和二元醇通过化学缩聚制成的合成纤维。具有出色的抗皱性和保形性&#xff0c;所制衣物在穿着过程中不容…

解决xss转义导致转码的问题

一、xss简介 人们经常将跨站脚本攻击&#xff08;Cross Site Scripting&#xff09;缩写为CSS&#xff0c;但这会与层叠样式表&#xff08;Cascading Style Sheets&#xff0c;CSS&#xff09;的缩写混淆。因此&#xff0c;有人将跨站脚本攻击缩写为XSS。跨站脚本攻击&#xff…

vue中实现文字检索时候将搜索内容标红

实现结果 html&#xff1a; <div class"searchBox"><span class"bt">标&#8195&#8195题</span><div class"search"><div class"shuru"><!-- <span class"title">生产经营<…

C语言:字符函数和字符串函数

往期文章 C语言&#xff1a;初识C语言C语言&#xff1a;分支语句和循环语句C语言&#xff1a;函数C语言&#xff1a;数组C语言&#xff1a;操作符详解C语言&#xff1a;指针详解C语言&#xff1a;结构体C语言&#xff1a;数据的存储 目录 往期文章前言1. 函数介绍1.1 strlen1.…

[JavaWeb]【六】web后端开发-请求响应

前言&#xff1a;请求响应 目录 一 引子 二 请求 2.1 Postman 2.1.1 安装 2.1.2 创建工作空间 2.1.3 添加接口 2.2 简单参数 2.2.1 原始方式&#xff08;不推荐&#xff09; 2.2.2 SpringBoot方式-GET(参数名与形参变量名相同) 2.2.3 SpringBoot方式-POST(参数名与形参…

为AI而生的数据库:Milvus详解及实战

1 向量数据库 1.1 向量数据库的由来 在当今数字化时代&#xff0c;人工智能AI正迅速改变着我们的生活和工作方式。从智能助手到自动驾驶汽车&#xff0c;AI正在成为各行各业的创新引擎。然而&#xff0c;这种AI的崛起也带来了一个关键的挑战&#xff1a;如何有效地处理和分析…

spring boot 整合支付宝微信支付

1.目录结构 2.引入依赖 <!--引入阿里支付--><dependency><groupId>com.alipay.sdk</groupId><artifactId>alipay-sdk-java</artifactId><version>4.11.8.ALL</version></dependency><!--引入微信支付--><depe…

Ajax入门+aixos+HTTP协议

一.Ajax入门 概念:AJAX是浏览器与服务器进行数据通信的技术 axios使用: 引入axios.js使用axios函数:传入配置对象,再用.then回调函数接受结果,并做后续处理 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>01.axios使用…

[bug] 记录version `GLIBCXX_3.4.29‘ not found 解决方法

在使用mediapipe 这个库的时候&#xff0c;首次使用出现 GLIBCXX_3.4.29’ not found 错误&#xff0c; 看起来是安装mediapipe 的时候自动升级了 matplotlib 这个库&#xff0c;导致依赖的 libstd.so 版本不满足了&#xff0c;GLIBCXX_3.4.29 is an object from libstdc.so.…