import argparse
import time
import cv2
import numpy as np
# 配置参数
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", type=str,
help="path to input video file")
ap.add_argument("-t", "--tracker", type=str, default="kcf",
help="OpenCV object tracker type")
args = vars(ap.parse_args())
# opencv已经实现了的追踪算法
OPENCV_OBJECT_TRACKERS = {
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
# 实例化OpenCV's multi-object tracker
trackers = cv2.MultiTracker_create()
vs = cv2.VideoCapture(args["video"])
# 视频流
while True:
# 取当前帧
frame = vs.read()
# (true, data)
frame = frame[1]
# 到头了就结束
if frame is None:
break
# resize每一帧
(h, w) = frame.shape[:2]
width=600
r = width / float(w)
dim = (width, int(h * r))
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
# 追踪结果
(success, boxes) = trackers.update(frame)
# 绘制区域
for box in boxes:
(x, y, w, h) = [int(v) for v in box]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# 显示
cv2.imshow("Frame", frame)
key = cv2.waitKey(100) & 0xFF
if key == ord("s"):
# 选择一个区域,按s
box = cv2.selectROI("Frame", frame, fromCenter=False,
showCrosshair=True)
# 创建一个新的追踪器
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
trackers.add(tracker, frame, box)
# 退出
elif key == 27:
break
vs.release()
cv2.destroyAllWindows()