基于AT89C51单片机构造波形发生器设计(含文档、源码与proteus仿真,以及系统详细介绍)

本篇文章论述的是基于AT89C51单片机构造波形发生器设计的详情介绍,如果对您有帮助的话,还请关注一下哦,如果有资源方面的需要可以联系我。

目录

摘要

仿真图

总体结构框图

仿真程序效果图

原理图

代码

系统论文(部分)

参考文献

资源下载


摘要

本实验采用AT89C51单片机构造低频信号发生器,可产生正弦波,方波,三角波,锯齿波四种波形,通过C语言对单片机的编程即可产生相应的波形信号,,并可以通过键盘进行各种功能的转换和信号频率的控制,当输出的数字信号通过DAC0832(直通式)数模转换成模拟信号也就得到所需要的信号波形,通过运算放大器的放大输出波形,同时让液晶显示输出的波形信息。采用Keil uVision4对单片机进行编程,采用Multisim 13.0进行外置电路仿真,最后通过Proteus-7.8sp2进行全电路具体仿真,以保证电路的可行性。

关键词  单片机 DAC0832 1602LCD液晶  

仿真图


 总体结构框图


仿真程序效果图


原理图


代码


#include <reg51.h>
#include<string.h>
#define uchar unsigned char
#define uint unsigned int
sbit RS=P3^0;
sbit RW=P3^1;
sbit EN=P3^3;
sbit K1=P2^0;
sbit K2=P2^1;
sbit K3=P2^2;
sbit K4=P2^3;
sbit K5=P2^4;
uchar WaveChoice=1;
uchar ys=30;
uchar i,a=0;
uchar sqar_num=128;
uint freq;
uchar code Sin[]={"Sine      "};
uchar code Squ[]={"Square    "} ;
uchar code Tri[]={"Triangle  "};
uchar code Saw[]={"Sawtooth  "} ;
uchar code No[]={"No Signal out "};
uchar code Wave[]={"Wave :"}; 
uchar code Fre[]={"Freq :"};
uchar code tosin[256]=
{0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa5,0xa8,0xab,
0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,
0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,
0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,
0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,
0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,
0xa8,0xa5,0xa2,0x9f,0x9c,0x99,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,
0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,
0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,
0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,
0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02 ,0x02,0x03,0x04,
0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,
0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,
0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e ,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66 ,
0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80 }; 
void DelayMS(uchar ms)
{
	uchar i;
	while(ms--) for(i=0;i<120;i++);
}
 void Delay1(uint y)
 {
 	uint i;
	for(i=y;i>0;i--);
 }
uchar Busy_Check()
{
	uchar LCD_Status;
	RS=0;  //	寄存器选择
	RW=1; //读状态寄存器
	EN=1;  // 开始读
	DelayMS(1);
	LCD_Status=P1;
	EN=0;
	return  LCD_Status;

}
void Write_LCD_Command(uchar cmd)
{
	   while((Busy_Check()&0x80)==0x80);   //忙等待
	   RS=0;  //选择命令寄存器
	   RW=0;  //写
	   EN=0;
	   P1=cmd;EN=1;DelayMS(1);EN=0;
}
void Write_LCD_Data(uchar dat)
{
	 while((Busy_Check()&0x80)==0x80);   //忙等待	
	  RS=1;  RW=0; EN=0; P1=dat;EN=1;DelayMS(1);EN=0;	
}
void Init_LCD()
{		
	Write_LCD_Command(0x38);
	DelayMS(1);
	Write_LCD_Command(0x01); //清屏
	DelayMS(1);
	Write_LCD_Command(0x06); //字符进入模式:屏幕不动,字符后移
	DelayMS(1);
	Write_LCD_Command(0x0C); //显示开、关光标
	DelayMS(1);
}
void Write_freq(uint k)
{
	uchar qian,bai,shi,ge;
	qian=k/1000;
	bai=k/100%10;
	shi=k/10%10;
	ge=k%10;
	Write_LCD_Command(0x86+0x40);
	Write_LCD_Data(0x30+qian);
	Write_LCD_Data(0x30+bai);
	Write_LCD_Data(0x30+shi);
	Write_LCD_Data(0x30+ge);
	Write_LCD_Data(0x48);
	Write_LCD_Data(0x5a);
}
  void Xianshi_f()		   
{
  if(WaveChoice==1)
  {
     freq=(10000000/(50000+2860*ys));
	 Write_freq(freq);
  }
  if(WaveChoice==2)
  {
     freq=(10000000/(50000+2300*ys));
	 Write_freq(freq);
  }
   if(WaveChoice==3)
  {
     freq=(10000000/(14000+2300*ys));
	 Write_freq(freq);
  }
    if(WaveChoice==4)
  {
     freq=(10000000/(15000+2300*ys));
	 Write_freq(freq);
  }
}
void Write_wave(uchar  t )
{
	switch(t)
	{
		case 0:
				 Write_LCD_Command(0x86);
  				 DelayMS(5);
   				 for (i=0;i<sizeof(No)-1;i++)
					{
						Write_LCD_Data(No[i]);
						DelayMS(5);
					}
					break;
		case 1:
				ys=25;
				Write_LCD_Command(0x86);
  				 DelayMS(5);
   				 for (i=0;i<sizeof(Sin)-1;i++)
					{
						Write_LCD_Data(Sin[i]);
						DelayMS(5);
					}
				break;
		case 2:
				ys=30;
				Write_LCD_Command(0x86);
  				 DelayMS(5);
   				 for (i=0;i<sizeof(Squ)-1;i++)
					{
						Write_LCD_Data(Squ[i]);
						DelayMS(5);
					 }
			
				break;
		case 3:
				ys=30;
				Write_LCD_Command(0x86);
  				 DelayMS(5);
   				 for (i=0;i<sizeof(Tri)-1;i++)
					{
						Write_LCD_Data(Tri[i]);
						DelayMS(5);
					}
				break;
		case 4:
				ys=30;
			  	 Write_LCD_Command(0x86);//液晶显示位置
  				 DelayMS(5);
   				 for (i=0;i<sizeof(Saw)-1;i++)
					{
						Write_LCD_Data(Saw[i]);
						DelayMS(5);
					 }
				break;
	}
}
void Out_Wave(uchar i)
{	 uchar j;	
	switch(i)
	{
		case 0:	P0=0x00;break;
		case 1:
				for (j=0;j<255;j++)
				{
					P0=tosin[j];
					Delay1(ys);
				} 
				 break;
		case 2:
						{
					if(a<sqar_num)
						{
							P0=0xff;
							Delay1(ys);
						}
					else  
						{
							P0=0x00;
							Delay1(ys);
						}
						a++;
				}  break;
		case 3:
				{
					if(a<128)
						{
							P0=a;
							Delay1(ys);
						}
					else  
						{
							P0=255-a;
							Delay1(ys);
						}
						a++;
				}   break;
		case 4:
				{
		 			if(a<255)
					{
						P0=a;
						Delay1(ys);
					}
				
				a++;
			if(a==255)
				{
					a=0;
				}   break;
		}
	}
}
void keyscanf()
{	
	if(K2==0)
	{
		DelayMS(5);
		if(K2==0)
		{
			while(!K2);
			ys--;
			if(ys==0)
			ys=20;
		}
	}
	if(K3==0)
	{
		DelayMS(5);
		if(K3==0)
		{
			while(!K3);
			ys++;
			if(ys>22)
			ys=20;
		}
	}
	if(K4==0)
	{
		DelayMS(5);
		if(K4==0)
		{
			while(!K4);
			if(WaveChoice==2)
			sqar_num=sqar_num+2;
			if(sqar_num==238)
				sqar_num=128;
		}
	}
	if(K5==0)
	{
		DelayMS(5);
		if(K5==0)
		{
			while(!K5);
			if(WaveChoice==2)
			sqar_num=sqar_num-2;
			if(sqar_num==18)
				sqar_num=128;			
		}
	}
} 

系统论文(部分)


引    言

只要是能产生测试信号的仪器,都叫做信号源,也称做信号发生器,它广泛用在产生被测电路所需特定参数的电测试信号中。在测试、研究或者调整电子电路和设备时,为了测定电路的一些电参量,如测量频率响应、噪声系数,为了给电压表定度数等,都要求提供符合特定技术条件的电信号,以便模拟在实际工作中使用的待测的设备的激励信号。当进行系统的稳态特性测量时,需要使用振幅、已知频率的正弦信号源。当测试系统具有瞬态特性的时候,需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源,

且要求信号源输出信号参数,象频率、波形、输出电压或功率等,在一定范围内能够进行精确调整,信号发生器内部都带有扫频输出的功能,带有外部扫频控制的输入接口。

单片微型计算机简称单片机(Microcontrollers),是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。

DAC0832是8分辨率的D/A转换集成芯片。与微处理器完全兼容。这个DA芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用。D/A转换器由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。

1  设计方案与论证

本设计实现的是通过单片机编写程序改变信号发生器的输出波形,通过按键模块控制信号输入的类型,并实现相应的信号输出,然后让输出信号经过D/A数模转换器转化成模拟信号后再经过运算放大器放大信号,完成波形的显示。另外在附加一个1602LCD液晶显示模块,显示波形的频率。

1.1技术指标与要求

(1)利用51单片机通过编程来控制波形。

(2)液晶要实时地准确显示波形频率的大小。

1.2设计原理及思路

本实验利用C8051f340单片机构造低频信号发生器,可产生正弦波,方波,三角波,锯齿波四种波形,通过C语言对单片机的编程即可产生相应的波形信号,并可以通过键盘进行各种功能的转换和信号频率的控制,当输出的数字信号通过数模转换成模拟信号也就得到所需要的信号波形,通过运算放大器的放大输出波形,同时让显示器显示输出的波形信息。

DAC0832管脚图见图1-2-2。

图1-2-2 DAC0832图

图1-4-1 程序流程图

2  方案比较与选择

方案一:采用单片函数发生器可产生正弦波、方波等,操作简单易行,用D/A转换器的输出来改变调节电压,可以实现数控调整频率,但产生信号的频率稳定度不高。

方案二:利用芯片组成的电路输出波形,MAX038是MAXIM公司所生产的一种只需要少量的外部元件的波形产生器,它所产生的频率波是比较精密的。产生的三角波、正弦波方波的频率很高,并且产生非常准确。调整电流、电压和电阻可以控制输出频率以及占空比。所需的输出波形可由在A0和A1输入端设置适当的代码来选择,且具有输出频率范围宽、波形稳定、失真小、使用方便等特点。  

方案三:采用Atmel公司的AT89C51单片机编程方法实现,该方法的可以通过编程的方法控制信号波形的频率和幅度,而在硬件电路不便的情况下,通过程序实现频率的变化和输出波形的选择,并同时在显示器显示相应的结果。  

方案四:采用AT89C51单片机编程方法实现,该方法的可以通过编程的方法控制信号波形的频率和幅度,而在硬件电路不便的情况下,通过程序实现频率的变化和输出波形的选择,并同时在显示器显示相应的结果

综合考虑采用方案四,通过AT89C51单片机和DAC0832数模转换器生成波形加上低通滤波器(使波形不容易失真)。在改变幅度时,应让输出电压通过运算放大器放大,这样幅度可调,相比DA的数字量,改变DA输出电流进而改变输出电压要优化一些。

6 结论与心得

本次课程设计着实使令我受益匪浅,第一次自主选题,自己画仿真原理图,Altium designer画原理图,还要连pcb。在动手实验的过程中我明白了只有对书本上的知识有比较深刻的了解才能对电路进行精确的设计。假如你对书本上的理论知识没有系统性的学习,就很难设计出实际有效的电路。当对书本知识有深刻的了解后,就会开始考验自己的动手能力,经过实践也相当于反复地了解与复习知识,把知识理解得更透彻,而且如果要进行下一步设计的话就要对一些元件有一定的了解,了解各个元器件的参数与作用,在做本次课程设计的过程中,通过查找不同的芯片资料,慢慢去了解自己从未接触过的东西,我学会了很多查资料和用资料的方法,也不断地加深对各个元件有了更加深刻的了解。

参考文献

[1]童诗白、华成英主编。模拟电子技术基础(第五版)。北京:高等教育出版社2006.5(2010重印)。513-573。

[2]李忠波、袁宏等主编。电子设计与仿真技术。北京:机械工业出版社2004.7。126-138。

[3]阎石主编。数字电子技术基础(第五版)北京:高等教育出版社2006.5。12-85。

[4]宋雪松主编。手把手教你学51单片机 北京:清华大学出版社2014.5(2016.3重印)。192-240


资源下载


如果有需要这个系统的源码、仿真、论文等资源的可以私信我。感谢你的阅读~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/801833.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qcom平台通过Hexagon IDE 测试程序性能指导

Qcom平台通过Hexagon IDE 测试程序性能指导 1 安装Hexagon IDE工具2 测试工程2.1 打开Hexagon IDE2.2 新建工程2.3 添加测试案例2.3.1 方法一&#xff1a;新建2.3.2 方法二&#xff1a;拷贝 2.4 配置测试环境2.4.1 包含头文件2.4.2 添加程序优化功能(需先bulid一下)2.4.3 添加g…

【14】Github Copilot环境搭建

环境搭建 这里以Visual Studio Code为例&#xff0c;安装好vs code&#xff0c;打开扩展侧边菜单栏&#xff0c;搜索“Github Copilot”&#xff0c;会出现如下图的两个插件&#xff0c;点击安装第一个&#xff0c;另一个会附带一起安装&#xff0c;然后弹出提示重新启动vs co…

阿里云CDN- https(设计支付宝春节开奖业务)

HTTP相关概念 1. HTTP概述 http是最广泛的网络协议&#xff0c;是客户端与服务器之间的请求与应答的标准&#xff08;TCP&#xff09;&#xff0c;用于www服务器传输超文本到本地浏览器的传输协议&#xff0c;使浏览器更加高效&#xff0c;网络传输减少。 2.HTTPS概述 http…

OpenHarmony移植之编译工具链

OpenHarmony移植之编译工具链 1、下载工具链 选择适合自己芯片的arm编译工具链&#xff0c;因为我的是arm cortex-a9的芯片&#xff0c;所以我选择如下交叉工具链 Downloads | GNU-A Downloads – Arm DeveloperDownload the The GNU Toolchain for the Cortex-A Family are…

稀疏3D检测-Sparse4Dv1v2v3

0. Multi-view 3D detection LSS(Lift-Splat-Shoot)利用深度估计将图像特征提升到3D空间&#xff0c;并将特征拍到BEV平面。后续工作将lift-splats操作应用于3D检测领域。 Bevformer将时序信息以BEV特征cat一起引入时序信息。 DETR3D中通过预测的3D点投影到图像平面后获取图像…

HTTPS请求头缺少HttpOnly和Secure属性解决方案

问题描述&#xff1a; 建立Filter拦截器类 package com.ruoyi.framework.security.filter;import com.ruoyi.common.core.domain.model.LoginUser; import com.ruoyi.common.utils.SecurityUtils; import com.ruoyi.common.utils.StringUtils; import com.ruoyi.framework.…

vue仿甘特图开发工程施工进度表

前言 本文是根据项目实际开发中一个需求开发的demo&#xff0c;仅用了elementUI&#xff0c;可当作独立组件使用&#xff0c;C V即用。 当然没考虑其他的扩展性和一些数据的校验&#xff0c;主要是提供一个处理思路&#xff0c;有需要的小伙伴可以直接复制&#xff1b;本demo的…

厂家置换电费如何达到最大化收益

新能源行业知识体系-------主目录-----持续更新https://blog.csdn.net/grd_java/article/details/140004020 文章目录 一、电能电费二、同时刻不同厂家置换&#xff0c;不会影响最终电能电费结果三、风险防范补偿和回收机制四、我们的数据如何考虑补偿和回收五、如何利用补偿和…

K8S私有云裸金属服务器负载均衡器OpenELB——筑梦之路

OpenELB介绍 OpenELB 是一个专为裸机 Kubernetes 集群设计的开源负载均衡器实现。 在云服务环境中的 Kubernetes 集群里&#xff0c;通常可以用云服务提供商提供的负载均衡服务来暴露 Service&#xff0c;但是在本地没办法这样操作。而 OpenELB 可以让用户在裸金属服务器、边缘…

二叉树问题,两种解决方法(1遍历 2直接定义名字功能递归

1第一种方法就是另写一个traverse方法&#xff0c;2第二种方法就是把函数名当成已经实现的功能&#xff0c;直接写 1、翻转二叉树 class Solution {public TreeNode invertTree(TreeNode root) {if(rootnull) return null;TreeNode leftinvertTree(root.left);TreeNode righti…

Facebook:数字时代的社交瑰宝

在当今数字化飞速发展的时代&#xff0c;社交媒体已经成为人们日常生活中不可或缺的一部分&#xff0c;而Facebook作为其中的领军者&#xff0c;不仅连接了全球数十亿的用户&#xff0c;更深刻地改变了人们的社交方式和生活方式。本文将探讨Facebook如何成为数字时代的社交瑰宝…

【排序算法】1.冒泡排序-C语言实现

冒泡排序&#xff08;Bubble Sort&#xff09;是最简单和最通用的排序方法&#xff0c;其基本思想是&#xff1a;在待排序的一组数中&#xff0c;将相邻的两个数进行比较&#xff0c;若前面的数比后面的数大就交换两数&#xff0c;否则不交换&#xff1b;如此下去&#xff0c;直…

SimMIM:一个类BERT的计算机视觉的预训练框架

1、前言 呃…好久没有写博客了&#xff0c;主要是最近时间比较少。今天来做一期视频博客的内容。本文主要讲SimMIM&#xff0c;它是一个将计算机视觉&#xff08;图像&#xff09;进行自监督训练的框架。 原论文&#xff1a;SimMIM&#xff1a;用于掩码图像建模的简单框架 (a…

支持大量边缘盒子集中管理调度的智慧物流开源了。

智慧物流视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒&#xff0c;省去繁琐重复的适配流程&#xff0c;实现芯片、算法、应用的全流程组合&#xff0c;从而大大减少企业级应用约95%的开发成本。用户只需在界面上…

在golang中Sprintf和Printf 的区别

最近一直在学习golang这个编程语言&#xff0c;我们这里做一个笔记就是 Sprintf和Printf 的区别 fmt.Sprintf 根据格式化参数生成格式化的字符串并返回该字符串。 fmt.Printf 根据格式化参数生成格式化的字符串并写入标准输出。由上面就可以知道&#xff0c;fmt.Sprintf返回的…

NodeJS技巧:在循环中管理异步函数的执行次数

背景介绍 在现代Web开发中&#xff0c;NodeJS因其高效的异步处理能力而备受青睐。尤其在数据抓取、网络爬虫等应用场景中&#xff0c;NodeJS的非阻塞I/O特性使其成为不二之选。然而&#xff0c;在实际编程过程中&#xff0c;我们经常会遇到一个棘手的问题——如何在循环中控制…

初识Docker及管理Docker

Docker部署 初识DockerDocker是什么Docker的核心概念镜像容器仓库 容器优点容器在内核中支持2种重要技术&#xff1a;Docker容器与虚拟机的区别 安装Docker源码安装yum安装检查Docker Docker 镜像操作配置镜像加速器&#xff08;阿里系&#xff09;搜索镜像获取镜像查看镜像信息…

python实现九九乘法表

1.self i 1 while i<9:j 1while j< i:print("j * i ",end)print(j * i ,end)print(" ",end)j 1i 1print() 实现结果&#xff1a; 2.改进 i 1 while i<9:j 1while j< i:# print("j * i ",end)# print(j * i ,end)# print(&…

CSA笔记1-基础知识和目录管理命令

[litonglocalhost ~]$ 是终端提示符&#xff0c;类似于Windows下的cmd的命令行 litong 当前系统登录的用户名 分隔符 localhost 当前机器名称&#xff0c;本地主机 ~ 当前用户的家目录 $ 表示当前用户为普通用户若为#则表示当前用户为超级管理员 su root 切换root权限…

详解曼达拉升级:如何用网络拓扑结构扩容BSV区块链

​​发表时间&#xff1a;2024年5月24日 BSV曼达拉升级是对BSV基础设施的战略性重塑&#xff0c;意在显著增强其性能&#xff0c;运行效率和可扩容。该概念于2018年提出&#xff0c;其战略落地将使BSV区块链顺利过渡&#xff0c;从现有的基于单一集成功能组件的网络拓扑结构&am…