YOLOv8白皮书-第Y8周:yolov8.yaml文件解读

本文为365天深度学习训练营中的学习记录博客
原作者:K同学啊|接辅导、项目定制

请根据YOLOv8n、YOLOv8s模型的结构输出,手写出YOLOv8l的模型输出

文件位置:./ultralytics/cfg/models/v8/yolov8.yaml

一、参数配置

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

Parameters:

  • nc:80 是类别数量,即模型可以识别的物体类别数。
  • scales:包含了不同模型配置的尺度参数,用于调整模型的规模,通过尺度参数可以实现不同复杂度的模型设计。YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l、YOLOv8x五种模型的区别在于depth、width、max_channels这三个参数的不同。
    • depth: 深度,控制子模块的数量, = int(number*depth)
    • width: 宽度,控制卷积核的数量, = int(number*width)
    • max_channels: 最大通道数

五种模型性能的详细参数如下所示:
在这里插入图片描述

二、模型整体结构
YOLOv5模型:
在这里插入图片描述

YOLO-v8整体模型结构:
在这里插入图片描述

1. Backbone模块

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

这是YOLOv8的backbone,每一个模块算一行,每行由四个参数构成。分别是:

  • from:表示当前模块的输入来自那一层的输出,-1表示来自上一层的输出,层编号由0开始计数。

  • repeats:表示当前模块的理论重复次数,实际的重复次数还要由上面的参数depth_multiple共同决定,该参数影响整体网络模型的深度。

  • model:模块类名,通过这个类名在common.py中寻找相应的类,进行模块化的搭建网络。

  • args:是一个list,模块搭建所需参数,channel,kernel_size,stride,padding,bias等。

    这个模块是YOLOv8的主干网络(backbone),用于提取输入图像的特征以便后续的目标检测任务。

YOLOv8的主干网络包括卷积层(Conv)、深度可分离卷积层(C2f)以及空间金字塔池化层(SPPF)等卷积部分。它们在不同层数级上增强了网络的表示能力和视野范围,可以更好地适应各种尺寸的输入图像。

网络的输入为一幅图像,输出为多个不同层数级的特征图(feature maps),将输出的特征图传递给头部(head)以产生物体检测的结果。

2. head模块

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

这是YOLOv8s的head,数据格式和backbone一样。

3. 模型结构输出

在这里插入图片描述
cmd命令行输入:

yolo task=detect mode=train model=yolov8n.yaml data=mydata.yaml epochs=100 batch=4

yolov8n.yaml可以换成其他模型的yaml,如yolov8s.yaml、yolov8l.yaml、yolov8m.yaml、yolov8x.yaml
(1)yolov8n.yaml模型:

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 22        [15, 18, 21]  1    752092  ultralytics.nn.modules.head.Detect           [4, [64, 128, 256]]
YOLOv8n summary: 225 layers, 3,011,628 parameters, 3,011,612 gradients, 8.2 GFLOPs

(2)yolov8s.yaml模型:

                   from  n    params  module                                       arguments
  0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]
  1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]
  3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]
  7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]
  8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]
  9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    591360  ultralytics.nn.modules.block.C2f             [768, 256, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1   1969152  ultralytics.nn.modules.block.C2f             [768, 512, 1]
 22        [15, 18, 21]  1   2117596  ultralytics.nn.modules.head.Detect           [4, [128, 256, 512]]
YOLOv8s summary: 225 layers, 11,137,148 parameters, 11,137,132 gradients, 28.7 GFLOPs

(3)yolov8l.yaml模型:

                   from  n    params  module                                       arguments
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]
  3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]
  5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]
  6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]
  8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]
  9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]
 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]
 19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]
 22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]]
YOLOv8l summary: 365 layers, 43,632,924 parameters, 43,632,908 gradients, 165.4 GFLOPs

三、总结
了解了YOLOv8的各种模型结构,了解了YOLOv8各种模型的参数配置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/801579.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

android APP在蓝牙模拟键盘扫描条码设备开机时闪退

🏆本文收录于《CSDN问答解答》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&…

下载安装VSCode并添加插件作为仓颉编程入门编辑器

VSCode下载地址:下载 Visual Studio Code - Mac、Linux、Windows 插件下载:GitCode - 全球开发者的开源社区,开源代码托管平台 仓颉社区中下载解压 cangjie.vsix 插件 打开VSCode 按 Ctrl Shift X 弹出下图 按照上图步骤依次点击选中我们下…

【Unity2D 2022:UI】制作主菜单

一、创建主菜单游戏场景 1. 在Scenes文件夹中新建一个游戏场景Main Menu 2. 为场景添加背景 (1)创建画布Canvas (2)在Canvas中创建新的空游戏物体Main Menu (3)在Main Menu中新建一个图像游戏物体Backgrou…

c++基础(1)

c语言是结构化和模块化的语言,用于处理规模较小的程序。当问题需要高度抽象和建模时,c语言不适合。c是基于c语言产生的,既可以进行c语言过程化程序设计,又可以以抽象数据类型为特点的基于对象的程序设计,还可以进行面向…

pico+unity手柄和摄像机控制初级设置

1、摄像头配置 摄像头模式、floor是追踪原点类型(将根据设备检测到地面的高度来计算追踪原点), Device 模式时,为通常理解的 Eye 模式,不会将根据设备检测到地面的高度来计算追踪原点 选择floor时,修改相…

达梦数据库的系统视图v$recover_status

达梦数据库的系统视图v$recover_status 在达梦数据库(DM Database)中,V$RECOVER_STATUS 是一个系统视图,用于显示数据库的恢复状态信息。这个视图对于数据库管理员来说非常重要,尤其是在数据库发生故障需要进行恢复操…

Claude 3.5 Sonnet模型发布,对比ChatGPT4o孰强孰弱

Anthropic 这家生而为打击 OpenAI 安全问题的公司,正式发布了Claude 3.5 Sonnet模型! 用官网的话就是: 今天,我们推出了 Claude 3.5 Sonnet,这是我们即将推出的 Claude 3.5 型号系列中的第一个版本。Claude 3.5 Sonne…

批量提取PDF指定区域内容到 Excel , 根据PDF文件第一行文字来自动重命名v1.3-附思路和代码实现

本次文章更新内容,图片以及扫描的PDF也可以支持批量提取指定区域内容了,主要是通过截图指定区域,然后使用OCR来识别该区域的文字来实现的,所以精度可能会有点不够,但是如果是数字的话,问题不大;…

在线工具--将Json结构映射为另外一种Json结构

具体请前往:在线工具-将json结构映射为另外一个json结构

Home Assistant在windows环境安装

Home Assistant是什么? Home Assistant 是一个开源的智能家居平台,旨在通过集成各种智能设备和服务,提供一个统一的、可自定义的家庭自动化解决方案。它可以允许用户监控、控制和自动化家中的各种设备,包括灯光、温度、安全系统、…

算法 —— 高精度(模拟)

目录 加法高精度 两个正整数相加 两个正小数相加 两正数相加 减法高精度 两个正整数相减 两个正小数相减 两正数相减 加减法总结 乘法高精度 两个正整数相乘 两个正小数相乘 乘法总结 加法高精度 题目来源洛谷:P1601 AB Problem(高精&#x…

JVM知识点

一、java内存区域与内存异常 1、运行时数据区域 1)程序计数器 程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。在Java虚拟机的概念模型里 [1] ,字节码…

降本增效CRKD:通过跨模态知识蒸馏增强相机与毫米波雷达目标检测精度

Abstract 在自动驾驶的3D目标检测领域,激光雷达-摄像头(LC)融合是表现最好的传感器配置。然而,激光雷达的成本相对较高,这阻碍了该技术在消费者汽车中的普及。相反,摄像头和雷达已经普遍部署在现有车辆上&…

Springboot整合MyBatis实现数据库查询(二)

目录 第一章、准备1.1)准备数据库表1.2)创建springboot项目,添加依赖1.3)使用mybatis逆向工程 第二章、代码开发2.1)建包并编写代码2.2)application配置文件2.3)设置编译位置 第三章、测试访问3…

用HTML和CSS实现提示工具(tooltip)及HTML元素的定位

所谓提示工具,是指将鼠标移动到某个HTML元素(工具)时会显示一些提示内容(提示文本),而鼠标移出工具元素的范围时提示文本就消失了。考虑到提示文本元素应当在鼠标进入工具元素时显示,鼠标离开工…

JDK之使用keytool安装cer证书

可针对https请求缺失证书解决报错: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target 解决办法: 先通过浏览器下载证书,再使用JDK自带…

互联网末法时代的一些思考

这篇文章也是临时起意,很长一段时间没写个人思考类的文章,主要原因也是时间完全不够用。随着年龄的增长,看待问题的视角也逐渐发生变化,例如从关注现象到关注动机,从关注结果到关注起因,2021年的时代我曾经…

时间序列问题解题(基于经验模型,使用机器学习模型)(Datawhale AI 夏令营)

示例题目:2024 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 一,时间序列问题概述 1、时间序列问题定义 时间序列问题是一类重要的统计和数据分析问题,它涉及对按时间顺序排列的数据点进行分析、建模和预测。时间序列数据是由一系列随时…

【Apache Doris】周FAQ集锦:第 14 期

【Apache Doris】周FAQ集锦:第 14 期 SQL问题数据操作问题运维常见问题其它问题关于社区 欢迎查阅本周的 Apache Doris 社区 FAQ 栏目! 在这个栏目中,每周将筛选社区反馈的热门问题和话题,重点回答并进行深入探讨。旨在为广大用户…

支持CF高帧率的免费虚拟机系统

分享一个支持CF高帧率的免费虚拟机系统,这个是某UP主分享的,帧率也是能到两百帧吧,内存这些我开的是6h6g的,具体还是得看你们自己的电脑配置!文件较大,请先保存再下载,因为我也不知道哪天取消分…