昇思25天学习打卡营第22天|基于MindSpore的红酒分类实验

基于MindSpore的红酒分类实验

K近邻算法实现红酒聚类

1、实验目的

  • 了解KNN的基本概念;
  • 了解如何使用MindSpore进行KNN实验。

2、K近邻算法原理介绍

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:

  • K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。

  • 距离度量,反映了特征空间中两个样本间的相似度,距离越小,越相似。常用的有Lp距离(p=2时,即为欧式距离)、曼哈顿距离、海明距离等。

  • 分类决策规则,通常是多数表决,或者基于距离加权的多数表决(权值与距离成反比)。

2.1 分类问题

预测算法(分类)的流程如下:

(1)在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;

(2)统计集合N中每一类样本的个数 C i , i = 1 , 2 , 3 , . . . , c C_{i}, i=1,2,3,...,c Ci,i=1,2,3,...,c

(3)最终的分类结果为argmax C i C_{i} Ci (最大的对应的 C i C_{i} Ci)那个类。

在上述实现过程中,k的取值尤为重要。它可以根据问题和数据特点来确定。在具体实现时,可以考虑样本的权重,即每个样本有不同的投票权重,这种方法称为带权重的k近邻算法,它是一种变种的k近邻算法。

2.2 回归问题

假设离测试样本最近的k个训练样本的标签值为 y i y_{i} yi,则对样本的回归预测输出值为:

y ^ = ( ∑ i = 1 n y i ) / k \hat y = (\sum_{i=1}^{n}{y_{i}})/k y^=(i=1nyi)/k

即为所有邻居的标签均值。

带样本权重的回归预测函数为:

y ^ = ( ∑ i = 1 n w i y i ) / k \hat y = (\sum_{i=1}^{n}{w_{i}y_{i}})/k y^=(i=1nwiyi)/k

其中 w i w_{i} wi为第个 i i i样本的权重。

2.3 距离的定义

KNN算法的实现依赖于样本之间的距离,其中最常用的距离函数就是欧氏距离(欧几里得距离)。 R n \mathbb{R}^{n} Rn空间中的两点 x x x y y y,它们之间的欧氏距离定义为:

d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y) = \sqrt{\sum_{i=1}^{n}{(x_{i}-y_{i})^2}} d(x,y)=i=1n(xiyi)2

需要特别注意的是,使用欧氏距离时,应将特征向量的每个分量归一化,以减少因为特征值的尺度范围不同所带来的干扰,否则数值小的特征分量会被数值大的特征分量淹没。

其它的距离计算方式还有Mahalanobis距离、Bhattacharyya距离等。

3、实验环境

预备知识:

  • 熟练使用Python。
  • 具备一定的机器学习理论知识,如KNN、无监督学习、 欧式距离等。

实验环境:

  • MindSpore 2.0(MindSpore版本会定期更新,本指导也会定期刷新,与版本配套);
  • 本案例支持win_x86和Linux系统,CPU/GPU/Ascend均可运行。
  • 如果在本地运行此实验,请参考《MindSpore环境搭建实验手册》在本地安装MindSpore。

4、数据处理

4.1 数据准备

Wine数据集是模式识别最著名的数据集之一,Wine数据集的官网:Wine Data Set。这些数据是对来自意大利同一地区但来自三个不同品种的葡萄酒进行化学分析的结果。数据集分析了三种葡萄酒中每种所含13种成分的量。这些13种属性是

  1. Alcohol,酒精
  2. Malic acid,苹果酸
  3. Ash,灰
  4. Alcalinity of ash,灰的碱度
  5. Magnesium,镁
  6. Total phenols,总酚
  7. Flavanoids,类黄酮
  8. Nonflavanoid phenols,非黄酮酚
  9. Proanthocyanins,原花青素
  10. Color intensity,色彩强度
  11. Hue,色调
  12. OD280/OD315 of diluted wines,稀释酒的OD280/OD315
  13. Proline,脯氨酸
  • 方式一,从Wine数据集官网下载wine.data文件。
  • 方式二,从华为云OBS中下载wine.data文件。
KeyValueKeyValue
Data Set Characteristics:MultivariateNumber of Instances:178
Attribute Characteristics:Integer, RealNumber of Attributes:13
Associated Tasks:ClassificationMissing Values?No
from download import download

# 下载红酒数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MachineLearning/wine.zip"  
path = download(url, "./", kind="zip", replace=True)

4.2 数据读取与处理

导入MindSpore模块和辅助模块

在生成数据之前,导入需要的Python库。

目前使用到os库,为方便理解,其他需要的库,我们在具体使用到时再说明。

详细的MindSpore的模块说明,可以在MindSpore API页面中搜索查询。

可以通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息。

导入context模块,配置运行需要的信息。

%matplotlib inline
import os
import csv
import numpy as np
import matplotlib.pyplot as plt

import mindspore as ms
from mindspore import nn, ops

ms.set_context(device_target="CPU")
读取Wine数据集wine.data,并查看部分数据。
with open('wine.data') as csv_file:
    data = list(csv.reader(csv_file, delimiter=','))
print(data[56:62]+data[130:133])

在这里插入图片描述

取三类样本(共178条),将数据集的13个属性作为自变量 X X X。将数据集的3个类别作为因变量 Y Y Y
X = np.array([[float(x) for x in s[1:]] for s in data[:178]], np.float32)
Y = np.array([s[0] for s in data[:178]], np.int32)
取样本的某两个属性进行2维可视化,可以看到在某两个属性上样本的分布情况以及可分性。
attrs = ['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols',
         'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue',
         'OD280/OD315 of diluted wines', 'Proline']
plt.figure(figsize=(10, 8))
for i in range(0, 4):
    plt.subplot(2, 2, i+1)
    a1, a2 = 2 * i, 2 * i + 1
    plt.scatter(X[:59, a1], X[:59, a2], label='1')
    plt.scatter(X[59:130, a1], X[59:130, a2], label='2')
    plt.scatter(X[130:, a1], X[130:, a2], label='3')
    plt.xlabel(attrs[a1])
    plt.ylabel(attrs[a2])
    plt.legend()
plt.show()

在这里插入图片描述

将数据集按128:50划分为训练集(已知类别样本)和验证集(待验证样本):
train_idx = np.random.choice(178, 128, replace=False)
test_idx = np.array(list(set(range(178)) - set(train_idx)))
X_train, Y_train = X[train_idx], Y[train_idx]
X_test, Y_test = X[test_idx], Y[test_idx]

5、模型构建–计算距离

利用MindSpore提供的tile, square, ReduceSum, sqrt, TopK等算子,通过矩阵运算的方式同时计算输入样本x和已明确分类的其他样本X_train的距离,并计算出top k近邻

class KnnNet(nn.Cell):
    def __init__(self, k):
        super(KnnNet, self).__init__()
        self.k = k

    def construct(self, x, X_train):
        #平铺输入x以匹配X_train中的样本数
        x_tile = ops.tile(x, (128, 1))
        square_diff = ops.square(x_tile - X_train)
        square_dist = ops.sum(square_diff, 1)
        dist = ops.sqrt(square_dist)
        #-dist表示值越大,样本就越接近
        values, indices = ops.topk(-dist, self.k)
        return indices

def knn(knn_net, x, X_train, Y_train):
    x, X_train = ms.Tensor(x), ms.Tensor(X_train)
    indices = knn_net(x, X_train)
    topk_cls = [0]*len(indices.asnumpy())
    for idx in indices.asnumpy():
        topk_cls[Y_train[idx]] += 1
    cls = np.argmax(topk_cls)
    return cls

6、模型预测

在验证集上验证KNN算法的有效性,取 k = 5 k = 5 k=5,验证精度接近80%,说明KNN算法在该3分类任务上有效,能根据酒的13种属性判断出酒的品种。

acc = 0
knn_net = KnnNet(5)
for x, y in zip(X_test, Y_test):
    pred = knn(knn_net, x, X_train, Y_train)
    acc += (pred == y)
    print('label: %d, prediction: %s' % (y, pred))
print('Validation accuracy is %f' % (acc/len(Y_test)))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/800224.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WSL-Ubuntu20.04环境使用YOLOv8 TensorRT推理加速

在阅读本章内容之前,需要把部署环境以及训练环境都安装好。 1.TensorRTX下载 这里使用Wang-xinyu大佬维护的TensorRTX库来对YOLOv8进行推理加速的演示,顺便也验证一下前面环境配置的成果。 github地址:GitHub - wang-xinyu/tensorrtx&#x…

SourceTree rebase(变基)的使用

参考资料 【Sourcetree】コミットを一つにまとめる【Sourcetree】リベースする 目录 前提0.1 merge与rebase0.2 merge合并分支0.3 rebase合并分支0.4 💥超级注意事项💥 一. 代码已提交,未推送,交互式变基1.1 通过SourceTree操作1…

Richtek立锜科技可用于智能门铃的电源管理解决方案

新型的智能门铃不仅能满足呼叫、提醒的需要,还能在线监控、远程操作、闯入通知、记录过程,系统构成相对复杂,与传统门铃相比有了很大的改变。 从电源管理的角度来观察,满足这样需求的系统构成也相对复杂: 处于外置状态…

ElementUIV12相关使用方法

今日内容 零、 复习昨日 零、 复习昨日 一、Element UI Element,一套为开发者、设计师和产品经理准备的基于 Vue 2.0 的桌面端组件库 官网: https://element.eleme.cn/#/zh-CN Element Plus,基于 Vue 3,面向设计师和开发者的组件库 官网: htt…

多样化数据可视化方法的全面示例:基于Python的多样化数据可视化

文章目录 前言代码效果展示 前言 本文演示了使用Python进行温度数据的多样化可视化方法。通过导入、处理和分析气象数据,我们生成了多种图表,包括直方图、核密度估计图、箱型图、小提琴图、条形图、山脊图、经验累积分布函数图和折线图。这些图表帮助我…

从产品手册用户心理学分析到程序可用性与易用性的重要区别

注:机翻,未校对。 Designing for People Who Have Better Things To Do With Their Lives 为那些生活中有更重要事情要做的人设计 When you design user interfaces, it’s a good idea to keep two principles in mind: 在设计用户界面时,…

微软Office PLUS办公插件下载安装指南

微软OfficePLUS插件下载安装指南 简介: OfficePLUS微软官方出品的Office插件 ,OfficePLUS拥有30万高质量模板素材,能帮助Word、Excel、Powerpoint、PDF等多种办公软件提升效率,具有智能化、模板质量高、运行快、稳定性强等优点。…

探索Facebook:数字社交的魔力源泉

在当今信息爆炸和全球互联的时代,社交媒体平台成为了人们生活中不可或缺的一部分。而在这些平台中,Facebook无疑是最具影响力和创新性的代表之一。自2004年成立以来,Facebook不仅改变了人们的沟通方式,更通过不断的技术创新和用户…

Pycharm与Gitlab交互

环境准备 1、下载配置好本地Git 2、配置Pycharm上的Git 3、gitlab账号 Gitlab配置 Gitlab配置中文 账号》设置》偏好设置》简体中文 创建项目 命令行操作 打开项目会展示以下步骤 在pycharm克隆gitlab的项目 通过菜单栏 1、在PyCharm的顶部菜单栏中,选择“V…

探索智能合约在金融科技中的前沿应用与挑战

随着区块链技术的发展和普及,智能合约作为其核心应用之一,在金融科技(FinTech)领域中展现出了巨大的潜力和挑战。本文将深入探讨智能合约的基本概念、前沿应用案例,以及面临的技术挑战和发展趋势,旨在帮助读…

R语言进行集成学习算法:随机森林

# 10.4 集成学习及随机森林 # 导入car数据集 car <- read.table("data/car.data",sep ",") # 对变量重命名 colnames(car) <- c("buy","main","doors","capacity","lug_boot","safety"…

昇思25天学习打卡营第11天|RNN实现情感分类

概述 情感分类是自然语言处理中的经典任务&#xff0c;是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型&#xff0c;实现如下的效果&#xff1a; 输入: This film is terrible 正确标签: Negative 预测标签: Negative输入: This film is great 正确标…

SpringBoot之健康监控(Actuator)

1&#xff0c;基本介绍 Spring Actuator 是 Spring Boot 提供的一个扩展模块&#xff0c;用于监控和管理应用程序的生产环境。它通过 HTTP 端点暴露了大量的监控和管理功能&#xff0c;使得开发者可以在运行时查看应用程序的运行状况、配置信息、性能指标等。 主要功能&#…

【Qt】探索Qt框架:开发经典贪吃蛇游戏的全过程与实践

文章目录 引言项目链接&#xff1a;1. Qt框架的使用简介2. 贪吃蛇游戏设计2.1 游戏规则和玩法介绍2.2 游戏界面设计概述 3. 核心代码解析3.1 主界面&#xff08;GameHall&#xff09;3.1.1 布局和功能介绍3.1.2 代码实现分析 3.2 游戏选择界面&#xff08;GameSelect&#xff0…

WPF+MvvmLight 项目入门完整教程(一)

WPF+MvvmLight入门完整教程一 创建项目MvvmLight框架安装完善整个项目的目录结构创建自定义的字体资源下载更新和使用字体资源创建项目 打开VS2022,点击创建新项目,选择**WPF应用(.NET Framework)** 创建一个名称为 CommonProject_DeskTop 的项目,如下图所示:MvvmLight框架…

redis原理之底层数据结构(二)-压缩列表

1.绪论 压缩列表是redis最底层的结构之一&#xff0c;比如redis中的hash&#xff0c;list在某些场景下使用的都是压缩列表。接下来就让我们看看压缩列表结构究竟是怎样的。 2.ziplist 2.1 ziplist的组成 在低版本中压缩列表是由ziplist实现的&#xff0c;我们来看看他的结构…

uniapp 微信小程序根据后端返回的文件链接打开并保存到手机文件夹中【支持doc、docx、txt、xlsx等类型的文件】

项目场景&#xff1a; 我们在使用uniapp官方提供的uni.downloadFile以及uni.saveFile时&#xff0c;会发现这个文件下载的默认保存位置和我们预想的不太一样&#xff0c;容易找不到&#xff0c;而且没有提示&#xff0c;那么我们就需要把文件打开自己保存并且有提示保存到哪个…

fastadmin导入vue

前台 require-frontend.js或frontend-init.js 后台 require-backend.js或backend-init.js 后台 方法一 require-backend.js 在 paths 中加入’vue’:‘…/libs/vue/vue.min’, 在shim 中加入 paths: {............vue:../libs/vue/vue.min, } shim: {............vue: {ex…

acrobat 中 PDF 复制时不能精确选中所选内容所在行的一种解决方法

现象&#xff1a;划取行的时候&#xff0c;自动扩展为多行 如果整段选中复制&#xff0c;粘贴后是乱码 解决步骤 识别完&#xff0c;保存 验证 可以按行复制了。 如果遇到仅使用 acrobat OCR 不能彻底解决的&#xff0c;更换其他自己熟悉的进行 OCR。

小程序-模板与配置

一、WXML模板语法 1.数据绑定 2.事件绑定 什么是事件 小程序中常用的事件 事件对象的属性列表 target和currentTarget的区别 bindtap的语法格式 在事件处理函数中为data中的数据赋值 事件传参 &#xff08;以下为错误示例&#xff09; 3.事件传参与数据同步 4.条件渲染 …