路径规划 | 基于蚁群算法的三维无人机航迹规划(Matlab)

目录

  • 效果一览
  • 基本介绍
  • 程序设计
  • 参考文献

效果一览

在这里插入图片描述

基本介绍

基于蚁群算法的三维无人机航迹规划(Matlab)。

蚁群算法(Ant Colony Optimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法。该算法通过模拟蚂蚁在寻找食物时的行为,来解决各种优化问题,尤其是在图论和组合优化方面应用较广。

程序设计

  • 完整源码和数据私信博主回复基于蚁群算法的三维无人机航迹规划(Matlab)
clc
clear
close all

%% 输入数据
G=[ 0 0 1 1 1 0 0 0 0 1
    1 0 0 0 0 0 0 0 0 0
    0 0 0 0 0 0 0 0 0 0
    0 1 1 0 1 0 0 0 0 0
    0 1 1 0 1 0 0 0 1 0
    0 0 0 0 0 0 1 0 0 0
    0 0 0 1 0 0 0 0 0 1
    0 0 0 0 0 0 1 1 0 0
    0 1 0 0 0 0 1 0 0 0
    0 1 0 0 1 0 0 0 0 0];
% G=[ 0 1 1 1 0 
%     1 0 0 0 0 
%     0 0 0 0 1 
%     0 0 0 0 1 
%     0 1 1 0 1];


G = zeros(10,10);
d = randperm(95,21)+1;
d=sort(d);
G(d) = 1;

%% 栅格绘制
drawShanGe(G,0)
title('栅格地图')
%%
S = [1 1];    % 起点
E = [10 10];  % 终点
G0 = G;
G = G0(S(1):E(1),S(2):E(2)); % 该方式是为了方便更改起点与终点
[Xmax,dim] = size(G);        % 栅格地图列数为粒子维数,行数为粒子的变化范围
dim = dim - 2;               % 减2是去掉起点与终点

%% 参数设置
maxgen = 50;    % 最大迭代次数
NP = 30;         % 种群数量

%%%%%%%%%%%%%%%%%%%%%%%%%%%
 rPercent = 0.2;    

%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( NP * rPercent );    % %发现者



Xmin = 1;   % 变量下界

%% 初始化
X = zeros(NP,dim);
for i = 1:NP
    for j = 1:dim
       col = G(:,j+1);      % 地图的一列
       id = find(col == 0); % 该列自由栅格的位置
       X(i,j) =  id(randi(length(id))); % 随机选择一个自由栅格
       id = [];
    end 
    fit( i ) = fitness(X( i, : ),G);
end
fpbest = fit;   % 个体最优适应度
pX = X;      % 个体最优位置
 XX=pX;
[fgbest, bestIndex] = min( fit );        % 全局最优适应度
bestX = X(bestIndex, : );    % 全局最优位置
[fmax,B]=max(fit);
worse= X(B,:);  
%%
for gen = 1 : maxgen
    gen

       [ ans, sortIndex ] = sort( fit );% Sort.
     
      [fmax,B]=max( fit );
       worse= X(B,:);  
        
        [~, Idx] = sort( fpbest );
  r2=rand(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1 : pNum
 if(r2<0.9)
            r1=rand(1);
          a=rand(1,1);
          if (a>0.1)
           a=1;
          else
           a=-1;
          end
    X( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)
       else
            
           aaa= randperm(180,1);
           if ( aaa==0 ||aaa==90 ||aaa==180 )
            X(  i , : ) = pX(  i , :);   
           end
         theta= aaa*pi/180;   
       
       X(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      

      end
          X( i , :) = Bounds(X(i , : ), Xmin, Xmax );
         fit(  i  ) = fitness( X(  i , : ),G );
    end 
 [ fMMin, bestII ] = min( fit );      
  bestXX = X( bestII, : );  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 R=1-gen/maxgen;                           %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 Xnew1 = bestXX.*(1-R); 
     Xnew2 =bestXX.*(1+R);                    %%% Equation (3)
   Xnew1= Bounds(Xnew1, Xmin, Xmax );
   Xnew2 = Bounds(Xnew2, Xmin, Xmax );
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     Xnew11 = bestX.*(1-R); 
     Xnew22 =bestX.*(1+R);                     %%% Equation (5)
   Xnew11= Bounds(Xnew11, Xmin, Xmax );
   Xnew22 = Bounds(Xnew22, Xmin, Xmax );
   
   
     for i = ( pNum + 1 ) :12                  % Equation (4)
     X( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));
    X( i , :) = Bounds(X(i , : ),  min(Xnew1), max(Xnew2) );
   fit(  i  ) = fitness( X(  i , : ),G );
   end
   
  for i = 13: 19                  % Equation (6)

   
        X( i, : )=pX( i , : )+((randn(1)).*(pX( i , : )-Xnew11)+((rand(1,dim)).*(pX( i , : )-Xnew22)));
       X( i , :) = Bounds(X(i , : ), Xmin, Xmax );
         fit(  i  ) = fitness( X(  i , : ),G );
  
  end
  
  for j = 20 : NP                 % Equation (7)
       X( j,: )=bestX+randn(1,dim).*((abs(( pX(j,:  )-bestXX)))+(abs(( pX(j,:  )-bestX))))./2;
      X( j , :) = Bounds(X(j , : ), Xmin, Xmax );
         fit(  j  ) = fitness( X(  j , : ),G );
  end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     XX=pX;
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % 更新个体最优值和全局最优值
    for i = 1 : NP
        if (fit(i) < fpbest(i))
            fpbest(i) = fit(i);
            pX(i, :) = X(i, :);
        end
        if(fpbest(i) < fgbest)
            fgbest = fpbest(i);
            bestX = pX(i, :);
        end
    end
    bestX = LocalSearch(bestX,Xmax,G);
    fgbest = fitness(bestX,G);
    FG(gen,1)=fgbest;
end

参考文献

[1] 基于人工势场结合快速搜索树APF+RRT实现机器人避障规划附matlab代码
[2] 基于蚁群算法求解栅格地图路径规划问题matlab源码含GUI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/799691.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

记录一次渗透实战

收集目标域名信息 用到的知识&#xff1a;16-5 信息收集 - 域名-CSDN博客 目标域名为&#xff1a;h****e.cc 使用一些在线网站可以查询目标域名信息如&#xff1a;站长工具-百度权重排名查询-站长seo查询 - 爱站网 收集子域名 这里使用在线工具进行爆破&#xff1a;http:/…

MySQL学习记录 —— 이십일 MySQL服务器配置与管理(1)

文章目录 1、配置和默认值2、系统变量和选项1、介绍2、常用选项3、使用系统变量 3、常用服务器配置4、查看状态变量5、MySQL数据目录 mysql的服务端就是mysqld&#xff0c;d就是daemon&#xff0c;守护进程的意思。 配置文件中[mysqld]部分时服务器支持的启动选项。服务器的部…

MySQl高级篇 -索引优化篇

索引 InnoDB采用了一个B数来存储索引&#xff0c;使得在千万级数据量的一个情况下&#xff0c;树的高度可以控制在3层以内&#xff0c;而层高代表磁盘IO的一个次数&#xff0c;因此基于索引查找可以减少磁盘IO的次数 MySQL的索引是在存储引擎层实现的&#xff0c;不同的存储引…

浅聊授权-spring security和oauth2

文章目录 前言自定义授权spring security授权oauth2授权概述 前言 通常说到授权&#xff0c;就会想到登录授权、token令牌、JWT等概念&#xff0c;授权。顾名思义就是服务器授予了客户端访问资源的权益&#xff0c;那么要实现授权有几种方案呢&#xff0c;三种授权方式在公司项…

【java】力扣 买卖股票的最佳时机II

文章目录 题目链接题目描述思路代码 题目链接 122.买卖股票的最佳时机II 题目描述 思路 这道题和121.买卖股票的最佳时机 有所不同&#xff0c;不同点在于&#xff0c;这道题的股票可以多次买卖(但是要在买之前先卖掉) 详细思路请看链接的文章【java】力扣 买卖股票的最佳时…

KALI使用MSF攻击安卓设备

这期是kali使用MSF进行安卓渗透的保姆级别教程&#xff0c;话不多说&#xff0c;直接开始。 准备材料&#xff1a; 1.装有kali的实体机或虚拟机&#xff08;这里用实体机进行演示&#xff09; 2.一台安卓10.0以下的手机 打开kali&#xff0c;先用ifconfig查看自己的kali IP地址…

RABBITMQ的本地测试证书生成脚本

由于小程序要求必须访问wss的接口&#xff0c;因此需要将测试环境也切换到https&#xff0c;看了下官方的文档 RabbitMQ Web STOMP Plugin | RabbitMQ里面有这个信息 然后敲打GPT一阵子&#xff0c;把要求输入几个来回&#xff0c;得到这样一个脚本&#xff1a; generate_cer…

Redis 中String类型操作命令(命令演示,时间复杂度,返回值,注意事项)

String 类型 文章目录 String 类型set 命令get 命令mset 命令mget 命令get 和 mget 的区别incr 命令incrby 命令decr 命令decrby 命令incrbyfloat 命令append 命令getrange 命令setrange 命令 字符串类型是 Redis 中最基础的数据类型&#xff0c;在讲解命令之前&#xff0c;我们…

论文分享|Arxiv2024‘麦吉尔大学|LLM2Vec—将LLM转换为文本编码器

LLM本身的表征直接用于Embedding&#xff0c;比如用于检索/聚类/STS等任务&#xff0c;效果其实不太好。因此才需要将Embedding模型和大模型区分开来。本文介绍一篇将LLM转换为Embedding模型的工作&#xff0c;代码全开源&#xff0c;值得好好学习。 论文题目&#xff1a;LLM2…

Qt Mqtt客户端 + Emqx

环境 Qt 5.14.2 qtmqtt mqttx 功能 QT Mqtt客户端 qtmqtt 下载 qtmqtt (注意下载与QT版本相符的库)并使用QT 编译 编译完成后需要的文件: emqx 1.虚拟机中安装emqx,并启动 curl -s https://assets.emqx.com/scripts/install-emqx-deb.sh | sudo bash sudo apt-get inst…

【详解】Spring Cloud概述

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;Spring学习之路&#x1f4d5;格言&#xff1a;吾愚多不敏&#xff0c;而愿加学欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 1. 认识微服务 1.1 单体架构 1.2 集群和分布式架构 1.3 集群和分布式…

【全面介绍Pip换源】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 🦁Pip换源.⛅ 🦁当使用Pip安装Python软件包时,默认情况下会…

BayesPrism(贝叶斯棱镜法)可提取单细胞数据去卷积后将信息映射至bulkRNA数据

贝叶斯棱镜法作为一种工具可以根据scRNA数据(作为先验模型)去推断bulkRNA数据中肿瘤微环境组成(不同免疫细胞组分/不同细胞群)和基因表达情况。 开发者展示的图片就很形象了&#xff0c;左边图展示了把标注了不同细胞类型的单细胞数据作为先验信息(prior info)的基因信息和bul…

力扣144题:二叉树的先序遍历

给你二叉树的根节点 root &#xff0c;返回它节点值的 前序 遍历。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,2,3]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入&#xff1a;root [1] 输出&am…

【云岚到家】-day05-6-项目迁移-门户-CMS

【云岚到家】-day05-6-项目迁移-门户-CMS 4 项目迁移-门户4.1 迁移目标4.2 能力基础4.2.1 缓存方案设计与应用能力4.2.2 静态化技术应用能力 4.3 需求分析4.3.1 界面原型 4.4 系统设计4.4.1 表设计4.4.2 接口与方案4.4.2.1 首页信息查询接口4.4.3.1 数据缓存方案4.4.3.2 页面静…

【绝命Coding助力秋招】Python实现<实习僧>海投脚本

hello hello~ &#xff0c;这里是绝命Coding——老白~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f4a5;个人主页&#xff1a;绝命Coding-CSDN博客 &a…

Java 实验三:数组操作以及Java中的方法

一、实验目的 1、掌握数组的声明、初始化、查找、排序等的方式&#xff1b; 2、掌握Java中如何定义一个方法&#xff0c;定义好的方法如何进行调用等。 二、实验环境 1、windows11; 2、JDK1.8,集成开发环境Eclipse。 三、实验内容 1、 定义一个函数&#xff0c;获取某个…

Linux系统搭建轻量级个人博客VanBlog并一键发布公网远程访问

文章目录 前言1. Linux本地部署2. VanBlog简单使用3. 安装内网穿透4. 创建公网地址5. 创建固定公网地址 前言 今天和大家分享如何在Linux Ubuntu系统搭建一款轻量级个人博客VanBlog&#xff0c;并结合cpolar内网穿透软件生成公网地址&#xff0c;轻松实现随时随地远程访问本地…

网络配置命令

文章目录 一、查看网络接口信息 ifconfig1.1 网络接口名称1.2 使用 ifconfig 查看网络接口信息1.2.1 输出示例1.2.2 输出解释 1.3 查看特定网络接口信息1.3.1 输出示例 1.4 查看所有网络接口信息1.5 特殊网络接口 二、修改网络配置文件2.1 配置文件示例2.2 使配置生效2.3 关闭 …

JavaScript日期对象倒计时案例

思路&#xff1a;1.先求出当前时间的总毫秒数 2.再求出所需要求的时间的总毫秒数 3.用所求时间的减去当前时间的可得到倒计时剩余时间 4.最后将所求的倒计时剩余时间转换为天&#xff0c;小时&#xff0c;分钟&#xff0c;秒即可 <!DOCTYPE html> <html lang"en…