数学建模之“聚类分析”原理详解

一、聚类分析的概念 

1、聚类分析(又称群分析)是研究样品(或指标)分类问题的一种多元统计法。

2、主要方法:系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。这里主要介绍系统聚类法。根据事物本身的特性研究个体分类的方法,原则是同一类中的个体有较大的相似性,不同类间的个体差异很大。根据分类对象的不同,分为样品(观测量)聚类和变量聚类两种。样品聚类是对观测量(Case)进行聚类(不同的目的选用不同的指标作为分类的依据);变量聚类是找出彼此独立且有代表性的自变量,而又不丢失大部分信息。

3、按照远近程度来聚类需要明确两个概念:一个是点和点之间的距离,另一个是类和类之间的距离。点间距离有很多定义的方式。最简单的是欧氏距离,还有其他的距离,比如相似度等。两点相似度越大,就相当于距离越短。

4、由一个点组成的类是最基本的类,如果每一类都由一个点组成,那么点间距离就是类间距离。但如果某一类包含不止一个点,那么就要确定类间距离。比如两类之间最近点之间的距离可以作为这两类之间的距离,也可以用两类中最远点之间的距离作为这两类之间的距离;当然也可以用各类的中心之间的距离作为类间距离。在计算时,各种点间距离和类间距离的选择可以通过统计软件的选项来实现。不同选择的结果会不同。

二、Q型聚类常用的距离

记第i个样品Xi与第j 个样品Xj之间距离d(Xi, Xj)≜dij,它满足以下条件:

通过计算可得一对称矩阵D=(dij)n×n, dii=0。dij越小,说明Xi与Xj越接近。可以用作这里的距离有很多,常用的距离有以下三种:

三、R型聚类分析常用的相似系数 

如果cij满足以下三个条件,则称其为变量Xi与Xj的相似系数:

|cij|越接近于1,则Xi与Xj的关系越密切。

常用的相似系数有以下两种: 

夹角余弦(向量内积):

相关系数:

聚类过程可以描述为:选取一种距离或相似系数作为分类统计量;计算任何两个样品Xi与Xj之间的距离或相似系数排成一个距离矩阵或相似系数矩阵;规定一种并类规则(距离:越小越接近,相似系数:越大越接近)。

类与类之间距离定义法不同,产生了不同的系统聚类法:最短距离法、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。

他们的定义如下:

● 最短距离法:类之间距离为两类最近样品之间的距离。

● 最长距离法:类之间距离为两类最远样本之间的距离。

● 中间距离法:如果类与类之间的距离既不采用两者之间的最短距离也不采用两者之间的最长距离,而是采用两者之间的中间距离。

● 重心法:从物理观点看,类与类之间的距离可以用重心(该类样品的均值)之间的距离来代表。

● 类平均法:类重心法未能充分利用各样品的信息,为此可将两类之间距离平方定义为这两类元素两两元间的距离平方平均。 

四、相关概念和原理补充 

(一)、什么是聚类分析

聚类(Clustering):
1、聚类是一个将数据集划分为若干组( class) 或类( cluster)的过程, 并使得同一个组内的数据对象具有较高的相似度;而不同组中的数据对象是不相似的。


2、相似或不相似是基于数据描述属性的取值来确定的, 通常利用各数据对象间的距离来进行表示。


3、聚类分析尤其适合用来探讨样本间的相互关联关系从而对一个样本结构做一个初步的评价。

(二)、举例

1、示例一

表中给出9个顾客的购买信息, 包括购买的商品的数量及价格, 根据此两个特征量, 将顾客聚类成3类( 购买大量的高价产品; 购买少量的高价产品; 购买少量的低价产品) 。

 2、示例二

聚类是一个非常困难的事情, 因为在一个n维样本空间中, 数据可以以不同的形状和大小揭示类。
如在二维欧几里得空间中, 上面数据可以分类三个类也可以分为四个类, 类的数量的任意性是聚类过程中的主要问题。

(三)、聚类与分类的区别:
聚类是一 种无( 教师) 监督的学习方法。 与分类不同, 其不依赖于事先确定的数据类别, 以及标有数据类别的学习训练样本集合。 因此, 聚类是观察式学习, 而不是示例式学习。

(四)、什么是好的聚类

1、一个好的聚类方法将产生以下的高聚类:
最大化类内的相似性;
最小化类间的相似性。
2、聚类结果的质量依靠所使用度量的相似性和它的执行。
3、聚类方法的质量也可以用它发现一些或所有隐含模式的能力来度量。
(五)、聚类分析的种类

聚类分析有两种: 一种是对样品的分类, 称为Q型, 另一种是对变量( 指标) 的分类, 称为R型。


R型聚类分析的主要作用:
(1) 不但可以了解个别变量之间的亲疏程度, 而且可以了解各个变量组
合之间的亲疏程度。
(2) 根据变量的分类结果以及它们之间的关系, 可以选择主要变量进行Q
型聚类分析或回归分析。 (R2为选择标准)


Q型聚类分析的主要作用:
(1) 可以综合利用多个变量的信息对样本进行分析。
(2) 分类结果直观, 聚类谱系图清楚地表现数值分类结果。
(3) 聚类分析所得到的结果比传统分类方法更细致、 全面、 合理。

(六)、样品间的相似度量—距离

 

 

 (七)、典型例题

例1.为了研究辽宁、 浙江、 河南、 甘肃、 青海5省1991年城镇居民生活消费规律, 需要利用调查资料对五个省进行分类,指标变量共8个, 意义如下: x1:人均粮食支出, x2:人均副食支出;x3:人均烟酒茶支出, x4:人均其他副食支出,x5:人均衣着商品支出,x6:人均日用品支出, x7:人均燃料支出, x8人均非商品支出

 

 (八)、变量间的相似度量——相似系数

当对p个指标变量进行聚类时, 用相似系数来衡量变量之间的相似程度( 关联度) , 若用 表示变量之间的相似系数, 则应满足:

 1、① 夹角余弦。两变量的夹角余弦定义为:

 2、② 相关系数。两变量的相关系数定义为:

 

 (九)、类间距离

前面, 我们介绍了两个向量之间的距离, 下面我们介绍两个类别之间的距离:
设dij表示两个样品xi,xj之间的距离, Gp,Gq分别表示两个类别, 各自含有np,nq个样品.

(1)、最短距离,即用两类中样品之间的距离最短者作为两类间距离

 (2)、最长距离,即用两类中样品之间的距离最长者作为两类间距离

 (3)、类平均距离,即用两类中所有两两样品之间距离的平均作为两类间距离

 (4)、重心距离

 (5)、离差平方和距离( ward)

 显然, 离差平方和距离与重心距离的平方成正比。

(十)、谱系聚类法的步骤

1. 选择样本间距离的定义及类间距离的定义;
2. 计算n个样本两两之间的距离, 得到距离矩阵
3. 构造个类, 每类只含有一个样本;
4. 合并符合类间距离定义要求的两类为一个新类;
5. 计算新类与当前各类的距离。 若类的个数为1, 则转到步骤6, 否则回到步骤4;
6.画出聚类图;
7.决定类的个数和类。
 

(1) n个样品开始作为n个类, 计算两两之间的距离或相似系数, 得到实对称矩阵

 ( 2) 从D0的非主对角线上找最小( 距离) 或最大元素( 相似系数) , 设该元素是Dpq, 则将Gp,Gq合并成一个新类Gr=( Gp,Gq) , 在D0中去掉Gp,Gq所在的两行、 两列, 并加上新
类与其余各类之间的距离(或相似系数), 得到n-1阶矩阵D1。

(3) 从D1出发重复步骤( 2) 的做法得到D2, 再由D2出发重复上述步骤, 直到所有样品聚为一个大类为止。

(4) 在合并过程中要记下合并样品的编号及两类合并时的水平, 并绘制聚类谱系图。

(十一)、 谱系聚类的MATLAB实现:

(1) 输入数据矩阵, 注意行与列的实际意义;
(2) 计算各样品之间的距离( 行? 列? )
欧氏距离: d=pdist(A)% 注意计算A中各行之间的距离;
绝对距离: d= pdist(A,'cityblock');
明氏距离: d=pdist(A,'minkowski',r);% r要填上具体的实数
方差加权距离: d= pdist(A,'seuclid');
马氏距离: d= pdist(A,'mahal');


注意: 以上命令输出的结果是一个行向量, 如果要得到距离矩阵, 可以用命令:
D= squareform(d),
若得到三角阵, 可以用命令:
D= tril(squareform(d1)) %下三角函数
(3) 选择不同的类间距离进行聚类

最短距离: z1= linkage(d)
算出的距离行向量
% 此处及以下的d都( 2) 中

最长距离: z2= linkage(d,'complete')
中间距离: z3= linkage(d,'centroid')
重心距离: z4= linkage(d,'average')
离差平方和: z5= linkage(d,'ward')

注意: 此时输出的结果是一个n-1行3列的矩阵, 每一行表示在某水平上合并为一类的序号;
 

(4) 作出谱系聚类图

H=dendrogram(z,d) % 注意若样本少于30, 可以省去d,否则必须填写.
 

(5) 根据分类数目, 输出聚类结果

T=cluster(z,k) % 注意k是分类数目, z是( 3) 中的结果
Find(T==k0) % 找出属于第k0类的样品编号
 

(十二)、K-平均聚类算法

1、K-平均(k-means) 算法以k为参数, 把n个对象分为k个簇, 以使簇内对象具有较高的相似度, 而簇间的相似度较低。
2、相似度的计算根据一个簇中对象的平均值(被看作簇的重心) 来进行。

 

 

 

 

 

 

 

 以上就是我对数学建模“聚类分析”算法的总结和分享。希望我的分享对你有所启发!愿我们携手共进,逐梦不止!最后,敬请关注,持续更新中~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/79918.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【uniapp】picker mode=“region“ 最简单的省市区 三级联动

省市区 picker template <picker mode"region" :value"date" class"u-w-440" change"bindTimeChange"><u--inputborder"bottom"class"u-fb u-f-s-28"placeholder"请选择省市区"type"te…

vue实例挂载过程

以下仅为个人见解。 1.大致流程&#xff1a; new Vue()时会调用initMixin(Vue)将_init挂载到vue原型上&#xff1b;在_init()中调用$mount()方法($mount()方法也是挂载到vue原型上的)编译template模版&#xff0c;并生成render()函数&#xff1b;挂载到vm上后&#xff0c;会…

前端node.js入门-前端工程化与模块化

(创作不易&#xff0c;感谢有你&#xff0c;你的支持&#xff0c;就是我前行的最大动力&#xff0c;如果看完对你有帮助&#xff0c;请留下您的足迹&#xff09; 目录 Node.js 入门 什么是 Node.js&#xff1f; 什么是前端工程化&#xff1f; Node.js 为何能执行 JS&…

神经网络基础-神经网络补充概念-08-逻辑回归中的梯度下降算法

概念 逻辑回归是一种用于分类问题的机器学习算法&#xff0c;而梯度下降是优化算法&#xff0c;用于更新模型参数以最小化损失函数。在逻辑回归中&#xff0c;我们使用梯度下降算法来找到最优的模型参数&#xff0c;使得逻辑回归模型能够更好地拟合训练数据。 逻辑回归中的梯…

C语言——通讯录详解(动态版)

通讯录详解 前言&#xff1a;一、定义一个通讯录二、初始化三、增加联系人3.1 给通讯录扩容3.2增加联系人 四、释放内存五、完整代码 前言&#xff1a; 我们已经学过了通讯录的静态版&#xff0c;但是它的缺点很明显&#xff0c;通讯录满了就添加不了联系人了啦。我再让通讯录升…

山东布谷科技直播软件源码Nginx服务器横向扩展:搭建更稳定的平台服务

在直播软件源码平台中&#xff0c;服务器扮演着重要的角色&#xff0c;关系着视频传输、数据处理、用户管理等工作的顺利完成。随着互联网的迅猛发展&#xff0c;直播行业也随之崛起&#xff0c;全世界的人们都加入到了直播软件源码平台中&#xff0c;用户流量的增加让服务器的…

Mac鼠标增强工具Smooze Pro

Smooze Pro是一款Mac上的鼠标手势增强工具&#xff0c;可以让用户使用鼠标手势来控制应用程序和系统功能。 它支持多种手势操作&#xff0c;包括单指、双指、三指和四指手势&#xff0c;并且可以自定义每种手势的功能。例如&#xff0c;您可以使用单指向下滑动手势来启动Expos视…

web JS高德地图标点、点聚合、自定义图标、自定义窗体信息、换肤等功能实现和高复用性组件封装教程

文章目录 前言一、点聚合是什么&#xff1f;二、开发前准备三、API示例1.引入高德地图2.创建地图实例3.添加标点4.删除标点5.删除所有标点&#xff08;覆盖物&#xff09;6.聚合点7.自定义聚合点样式8.清除聚合9.打开窗体信息 四、实战开发需求要求效果图如下&#xff1a;封装思…

pdf怎么合并在一起?这几个合并方法了解一下

pdf怎么合并在一起&#xff1f;在日常工作、学习和生活中&#xff0c;我们常常会遇到需要将多个PDF文件合并成一个文件的情况。比如&#xff0c;在学术论文写作中&#xff0c;我们可能需要将多篇论文合并成一个文件进行打印和提交。在工作中&#xff0c;我们可能需要将多个报告…

记录每日LeetCode 617.合并二叉树 Java实现

题目描述&#xff1a; 给你两棵二叉树&#xff1a; root1 和 root2 。 想象一下&#xff0c;当你将其中一棵覆盖到另一棵之上时&#xff0c;两棵树上的一些节点将会重叠&#xff08;而另一些不会&#xff09;。你需要将这两棵树合并成一棵新二叉树。合并的规则是&#xff1a;…

如何从cpu改为gpu,pytorch,cuda

1.cmd输入nvcc -V 2.得到 cuda版本后&#xff0c;去pytorch官网 3.根据自己的cuda进行选择 4.复制上述链接&#xff0c;进入cmd 5.cmd中输入activate XXX,这里的"XXX"指代自己在工程中用到的环境 6.进入后&#xff0c;将刚才链接粘贴&#xff0c;回车等待下载结束 …

文心一言 VS 讯飞星火 VS chatgpt (76)-- 算法导论7.3 1题

一、如果用go语言&#xff0c;为什么我们分析随机化算法的期望运行时间&#xff0c;而不是其最坏运行时间呢? 文心一言&#xff1a; 在分析算法的性能时&#xff0c;期望运行时间是一个重要的指标&#xff0c;它描述了算法在平均情况下的表现。期望运行时间考虑了所有可能的…

spring(15) SpringBoot启动过程

目录 一、过程简介二、过程流程图三、源码分析1、运行 SpringApplication.run() 方法2、确定应用程序类型3、加载所有的初始化器4、加载所有的监听器5、设置程序运行的主类6、开启计时器7、将 java.awt.headless 设置为 true8、获取并启用监听器9、设置应用程序参数10、准备环境…

韦东山-电子量产工具项目:UI系统

代码结构 所有代码都已通过测试跑通&#xff0c;其中代码结构如下&#xff1a; 一、include文件夹 1.1 common.h #ifndef _COMMON_H #define _COMMON_Htypedef struct Region {int iLeftUpX; //区域左上方的坐标int iLeftUpY; //区域左下方的坐标int iWidth; //区域宽度…

安防监控视频云存储EasyCVR平台H.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…

从零做软件开发项目系列之一综论软件项目开发

1 引言 有一个三个泥瓦匠的故事。 三个泥瓦匠在砌墙&#xff0c;一个人走过来&#xff0c;问他们在干什么。   第一个泥瓦匠没好气地说&#xff0c;你没看见吗&#xff1f;我在辛苦地砌墙呢。   第二个回答&#xff0c;我们正在建一座高楼。   第三个则洋溢着喜悦说&…

CSS:filter滤镜 详解(用法 + 代码 + 例子 + 效果)

文章目录 filter 滤镜blur() 模糊度例子 渐变光晕 brightness() 元素亮度contrast() 对比度grayscale() 元素灰度hue-rorate() 色相opacity() 透明度invert() 反转颜色saturate() 饱和度 backdrop-filter 蒙版&#xff0c;滤镜例子 卷轴展开 filter 滤镜 动图为效果添加前后对…

开源了一套基于springboot+vue+uniapp的商城,包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发

RuoYi-Mall-JAVA商城-电商系统简介 开源了一套基于若依框架&#xff0c;SringBoot2MybatisPlusSpringSecurityjwtredisVueUniapp的前后端分离的商城系统&#xff0c; 包含分类、sku、商户管理、分销、会员、适合企业或个人二次开发。 前端采用Vue、Element UI&#xff08;ant…

视频汇聚/视频云存储/视频监控管理平台EasyCVR添加萤石云设备详细操作来啦!

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

贝锐蒲公英助力电子公交站牌联网远程运维,打造智慧出行新趋势

在现代城市公共交通系统中&#xff0c;我们随处可见电子公交站牌的身影。作为公共交通服务的核心之一&#xff0c;电子公交站牌的稳定运行至关重要&#xff0c;公交站台的实时公交状况、公共广告信息&#xff0c;是市民候车时关注的焦点。 某交通科技公司在承接某市智能电子站牌…