算法学习day12(动态规划)

一、不同的二叉搜索树

二叉搜索树的性质:父节点比左边的孩子节点都大;比右边的孩子节点都小;

由图片可知,dp[3]是可以由dp[2]和dp[1]得出来的。(二叉搜索树的种类和根节点的val有关)

当val为1时,左边是一定没有节点的,因为左边的值都要比根节点小;

只有右边会有n-val个节点。所以当val=1时,dp[i]=dp[i-val]*dp[val-1];

当val=n时候,左边的叶子结点有n-1,右边的节点有i-n;dp[i]=dp[i-val]*dp[val-1];
 

1.dp[i]:当节点为i的时候,有多少种二叉搜索树

2.关系递推式:dp[i]=dp[val-1]*dp[i-val];

3.初始化:dp[0]=1(空树) dp[1]=dp[1-1]*dp[1-1]=1

4.遍历顺序:从1开始

代码:

    public int numTrees(int n) {
        int[] dp=new int[n+1];
        //初始化
        dp[0]=1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                dp[i]+=dp[j-1]*dp[i-j];
            }
        }
        return dp[n];
    }

二、背包问题

01背包:n种物品,每种物品只有一个
完全背包:n种物品,每种物品有无限个
多重背包:n种物品,每种物品有不同个
01背包:

1.dp[i][j]数组的含义:i代表物品,j代表容量。dp[x][y],在容量为y的前提下,选择0-x号物品,所获得的最大价值。

2.递推公式:dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);

3.dp数组初始化:

    3.1 j=0,表示容量为0,因此dp[x][0]=0;

    3.2 i=0,表示物品只能选择第一个,只有容量>=weight[0]的时候,dp[0][weight[0]]才有值

4.遍历顺序:两层for循环,先是商品也可以先是容量也可以

5.打印数组

三、背包问题之滚动数组(将二维数组压缩为一维数组)

1.dp[j]:j是背包容量。dp[j]代表:当背包容量为j时,价值最大为多少?

2.dp[j]=Math.max(dp[j],dp[j-weight[i]]+value[i]);

3.dp数组初始化:都初始为0

4.遍历顺序:先遍历物品,再遍历容量,并且容量倒序遍历(保证物品i只被添加一次。)

(只能先物品再容量)

5.打印数组
代码:

public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
        int wLen = weight.length;
        //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
        int[] dp = new int[bagWeight + 1];
        //遍历顺序:先遍历物品,再遍历背包容量
        for (int i = 0; i < wLen; i++){
            for (int j = bagWeight; j >= weight[i]; j--){
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        //打印dp数组
        for (int j = 0; j <= bagWeight; j++){
            System.out.print(dp[j] + " ");
        }

四、分割等和子集(回溯法/动态规划)

给定一个非空的正整数数组 nums ,请判断能否将这些数字分成元素和相等的两部分。

一、回溯法:
    private List<Integer> list = new ArrayList<>();

    public boolean canPartition(int[] nums) {
        int sum=0;
        for(int i:nums){
            sum+=i;
        }
        if(sum%2!=0)return false;
        return backTracking(nums, 0, sum/2);
    }

    public boolean backTracking(int[] nums, int startIndex, int target) {
        if (sumOfList(list) == target)
            return true;
        if (sumOfList(list) > target||startIndex>=nums.length)
            return false;

        for (int i = startIndex; i < nums.length; i++) {
            boolean flag = backTracking(nums, i+1, target-nums[i]);
            if (flag == true)
                return true;
        }
        return false;
    }

    public int sumOfList(List<Integer> list) {
        int sum = 0;
        for (int i : list) {
            sum += i;
        }
        return sum;
    }
二、动态规划:

这道题的关键在于:把数字的重量和价值都当做数值,在(num.length-1)个物品中,容量为target,选取价值为target的物品

判断条件为dp[nums.length-1][target]==target

1.dp[i][j]:和背包问题一样的含义

2.dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);

3.初始化:默认对二维数组所有元素都初始为0,第一行需要改一下,当j>=nums[0]的时候,dp[0][j]=nums[0]

4.遍历顺序i=1,j=0;有一个判断条件:当剩余容量小于物品的重量时,直接下一个

if(j<nums[i])dp[i][j]=dp[i-1][j];

代码:

    public boolean canPartition(int[] nums) {
        int sum = 0;
        for (int i : nums) {
            sum += i;
        }
        if (sum % 2 != 0)
            return false;
        int target = sum / 2;
        // 定义dp数组
        int[][] dp = new int[nums.length][target + 1];
        // 对dp数组进行初始化
        for (int i = nums[0]; i <= target; i++) {
            dp[0][i] = nums[0];
        }
        // 遍历dp数组
        for (int i = 1; i < nums.length; i++) {
            for (int j = 0; j < target + 1; j++) {
                if (j < nums[i]) {
                    dp[i][j] = dp[i - 1][j];
                } else{
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);
                }
            }
        }
        //相当于 物品的个数为nums.length-1中,容量为target,选取价值为target的物品
        return dp[nums.length-1][target]==target;
    }

五、最后一块石头的重量II(类似分割等和子集)

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

思路:将一堆石头分成两堆,使他们的总重量接近。仍然使用dp数组,这里使用一维dp数组

1.dp[j]:j表示背包的容量.dp[j]表示该容量下的最大价值

2.dp[j]=Math.max(dp[j],dp[j-stones[i]]+stones[i]);

3.初始化

4.遍历

代码:

//我要在这么多石头里面 容量为x 要实现价值最高
class Solution {
    public int lastStoneWeightII(int[] stones) {
        // 定义dp数组
        int sum=0;
        for(int i:stones){
            sum+=i;
        }
        int[] dp=new int[sum/2+1];//容量为sum/2+1的数组
        // 遍历
        for(int i=0;i<stones.length;i++){
            for(int j=sum/2;j>=0;j--){
                if(j>=stones[i]){
                    dp[j]=Math.max(dp[j],dp[j-stones[i]]+stones[i]);
                }
            }
        }
        return sum-dp[sum/2]-dp[sum/2];
    }
}

六、目标和(回溯/动态规划)

给定一个正整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 
  • 返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
一、回溯法

二叉树的宽度是每次选正还是选负,二叉树的深度是数组的大小

三部曲:

1.返回值:void; 参数:int[] nums,int target,int startIndex(数组的下标)

2.终止条件:当startIndex==nums.length(说明最后一个元素已经遍历完了)

if(sum==target)count++;

3.单层递归逻辑:本层for循环中,要遍历+/- nums[i],还要回溯

class Solution {
    public int sum = 0;
    public int count = 0;

    public int findTargetSumWays(int[] nums, int target) {
        backTracking(nums, target, 0);
        return count;
    }
    public void backTracking(int[] nums, int target, int startIndex) {
        if(startIndex==nums.length){
            if(sum==target)count++;
            return;
        }
        for (int i = 0; i <= 1; i++) {
            int add=0;
            if(i==0){
                add=nums[startIndex];
            }else if(i==1){
                add=nums[startIndex]*-1;
            }
            sum+=add;
            backTracking(nums,target,startIndex+1);
            sum-=add;
        }
    }
}
二、动态规划

1.dp[j]:凑满容量为j的背包有dp[j]种方法

2.dp[j]=dp[j]+dp[j-nums[i]];这个递归公式的由来:

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]种方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]种方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]种方法 凑成 容量为5的背包
  • 那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

3.初始化dp[0]=1;

4.遍历

代码:

    public int findTargetSumWays(int[] nums, int target) {
        int sum=0;
        for(int i:nums){
            sum+=i;
        }
        //如果target的绝对值是大于sum的 那就没有方案
        if(Math.abs(target)>sum)return 0;
        //如果sum%2!=0
        if((target+sum)%2!=0)return 0;
        int capacity=(target+sum)/2;
        //定义dp数组
        int[] dp=new int[capacity+1];
        //初始化dp数组
        dp[0]=1;
        //遍历dp数组
        for(int i=0;i<nums.length;i++){
            for(int j=capacity;j>=nums[i];j--){
                dp[j]+=dp[j-nums[i]];
            }
        }
        return dp[capacity];
    }

注意:这道题为什么可以使用动态规划来做。left为加法的总和,right为减法的总和

left+right=sum;  left-right=target; 得出:left=(target+sum)/2;

就是在求有多少种方法可以组成容量为left的

七、一和零(装满容量为i,j有多少种方式)

动态规划:

1.dp[m][n]:求装m个0和n个1有多少种方式

2.dp[m][n]=Math.max(dp[m][n],dp[m-zeroNum][n-oneNum]+1);

3.初始化为0

4.遍历顺序:从后往前遍历,确保每一个元素都只使用一次

代码:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        //定义dp数组
        int[][] dp=new int[m+1][n+1];
        //dp[i][j],i个0和j个1,装满它们的最大子集是
        for(String str:strs){
            int zeroNum,oneNum;
            for(char ch:str){
                if(ch=='0')zeroNum++;
                else oneNum++;
            }
            for(int i=m;i>=zeroNum;i--){
                for(int j=n;j>=oneNum;j--){
                    dp[i][j]=Math.max(dp[i][j],dp[i-zeroNum][j-oneNum]+1);
                }
            }
        }
        //返回结果
        return dp[m][n];
    }
}

0/1背包总结:

1.纯01背包问题:装满x容量的背包最大价值为多少
2.分割等和子集:判断容量为x的背包最大价值是否为x,返回boolean类型

和普通01背包问题一样,就是返回的时候要判断最大价值是否是容量值

3.最后一块石头的重量:容量为x的背包最大价值为多少,
4.目标和:容量为x的背包有多少种方式组成,多少种组合能够装满背包
5.一和零:装满容量为x的背包最多有多少个商品

完全背包理论基础

完全背包:每个商品可以使用无数次

一、零钱兑换

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

分析:多重背包/求使用硬币最少次数

从题目中我们可以看出来,这是一道多重背包的问题,并且是求硬币的最少次数。直接将递推公式写出来:dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);

难点:初始化比较难,因为每次比较都是求使用硬币的最少次数。所以初始化的时候,dp[0]=0之外,其他元素都要初始化成:amount+1。就算全是一元硬币,最多也需要amount次。所以amount+1是不可能实现的一个次数。(我初始化用的Integer.MAX_VALUE,会导致整数溢出)

1.dp[j]:表示凑齐价值为j需要硬币的最小个数

2.dp[j]=Math.min(dp[j],dp[j-coins[i]]+1);

3.初始化:dp[0]=0 Arrays.fill(dp,amount+1);

4.遍历顺序(每个硬币可以使用无数次,因此从coins[i]开始遍历)

5.打印数组xxx
代码:

class Solution {
    public int coinChange(int[] coins, int amount) {
        // 动态规划问题 每一个硬币都可以使用无限次
        // 多重背包问题 凑成价值为amount的最少货币数
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount+1);//
        dp[0] = 0;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] = Math.min(dp[j - coins[i]] + 1, dp[j]);
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
}

二、零钱兑换II(装满背包容量为j的背包有多少种方法)不强调排列 组合数

1.dp[j]:装满j的背包有多少种方法

2.dp[j]+=dp[j-coins[i]];

3.dp[0]=1;(递推公式都基于dp[0] 如果dp[0]=0,那么其他的dp就都等于0)

4.遍历顺序

5.

代码:

class Solution {
    public int change(int amount, int[] coins) {
        //多重背包问题 求凑成总价值为amount的货币的种类
        //求种类的话 状态转移方程就要变化
        int[] dp=new int[amount+1];
        dp[0]=1;
        for(int i=0;i<coins.length;i++){
            for(int j=coins[i];j<=amount;j++){
                dp[j]+=dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
}

三、组合总和IV (排列数)    

先容量,再商品

    public int combinationSum4(int[] nums, int target) {
        //多重背包 求有多少种方法可以构成target
        int[] dp=new int[target+1];
        dp[0]=1;

        for(int j=0;j<=target;j++){
            for(int i=0;i<nums.length;i++){
                    if(j>=nums[i])
                dp[j]+=dp[j-nums[i]];
            }
        }
        return dp[target];
    }
组合数和排列数问题:

外层商品,内层容量:组合数,不考虑前后顺序。(因为外层商品是按照先后顺序进行的)

外层容量,内层商品:排列数,考虑顺序。

四、完全平方数(类似零钱兑换)

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

相当于:target就是总价格,每一个平方和就是一张纸币。要求完全平方数的最少数量。就是求最少纸币。

1.dp[j]:和为j的完全平方数的最少数量

2.dp[j]=Math.min(dp[j],dp[j-i*i]+1);遇到这个数字,是否选择这个数,如果选择数字就减去,不选择仍然是dp[j]

3.初始化,仍然初始为一个不可能的数字,target+1(就算都为1,也是target张)。dp[0]=0;

4.遍历顺序:先物品再背包

代码:

class Solution {
    public int numSquares(int n) {
        // 定义dp[j]:和为j的完全平方数的最少数量
        int[] dp = new int[n + 1];
        // 初始化
        // 其他下标的最大值为n+1(如果都为1的话)
        Arrays.fill(dp, n);
        dp[0] = 0;
        // 先遍历物品 再遍历背包
        for (int i = 1; i <= (int) Math.sqrt(n); i++) {
            for (int j = i * i; j <= n; j++) {
                dp[j] = Math.min(dp[j - i * i] + 1, dp[j]);
            }
        }
        return dp[n];
    }
}

五、单词拆分(排列数 需要考虑顺序)

动态规划:

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

字符串s;字符串列表字典wordDict

1.dp[i](boolean):长度为i的字符串是否由字符串列表组成的

2.if(i>=word.length()&&dp[i-word.length()]==true&&word.equals(s.substring(i-word.length(),i)))

dp[i]=true;

3.dp[0]=true;

思路:在字符串的范围不断往右移动的时候,和字符串字典里面的字符子集进行比较,如果满足条件那么就将dp[i]=true,条件为:.if(i>=word.length()&&dp[i-word.length()]==true&&word.equals(s.substring(i-word.length(),i)))

代码:

    public boolean wordBreak(String s, List<String> wordDict) {
        //对dp数组初始化
        boolean[] dp=new boolean[s.length()+1];
        dp[0]=true;
        //遍历dp数组 排列数 先考虑容量再考虑物品
        for(int i=0;i<=s.length();i++){
            for(String word:wordDict){
                int len=word.length();//字符串的长度
                if(i>=len&&dp[i-len]==true&&s.substring(i-len,i).equals(word)){
                    dp[i]=true;
                    break;
                }
            }
        }
        return dp[s.length()];
    }

六、打家劫舍

一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响小偷偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组 nums ,请计算 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

1.dp[i]:从0->i天,小偷偷取商品的最大价值

2.dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]); 今天偷不偷,今天偷就是dp[i-2]+nums[i];不偷就是dp[i-1];

3.初始化:dp[0]=nums[0];dp[1]=Math.max(nums[0],nums[1]);记住dp[]的含义

4.遍历顺序:从i=2开始

代码:

class Solution {
    public int rob(int[] nums) {
        int[] dp=new int[nums.length];//dp[i]的含义是从0-i可以偷的最大值
        Arrays.fill(dp,0);
        dp[0]=nums[0];//
        if(nums.length>1){
             dp[1]=Math.max(nums[0],nums[1]);
        }

        for(int i=2;i<nums.length;i++){
            dp[i]=Math.max(dp[i-1],dp[i-2]+nums[i]);
        }
        printfDp(dp);
        return dp[nums.length-1];
    }
    public void printfDp(int[] dp){
        for(int i:dp){
            System.out.print(i+" ");
        }
    }
}

七、打家劫舍II

在上一道题的基础上,屋子在一个环形的圆圈上排列,首尾也是相邻的

思路:如何破除环?

将带环的情况分成两种线性的情况:

1.将最后一个元素去除掉,然后求长度为size-1的线性表的最大价值

2.将第一个元素去除掉,xxx

也就是求两次dp,然后找一个最大值就行。

代码:

class Solution {
    public int rob(int[] nums) {
        int size=nums.length;
        if(size==1)return nums[0];
        if(size==2)return Math.max(nums[0],nums[1]);
        int a1=robAction(nums,0,size-1);
        int a2=robAction(nums,1,size);
        return Math.max(a1,a2);
    }

    public int robAction(int[] nums, int start, int end) {
        int size=end-start;
        int[] dp=new int[size];
        dp[0]=nums[start];
        if(size>1){
             dp[1]=Math.max(nums[start],nums[start+1]);
        }
        for(int i=2;i<size;i++){
            dp[i]=Math.max(dp[i-1],dp[i-2]+nums[start+i]);
        }
        return dp[size-1];
    }
}

注意的点:

1.robAction函数中的参数start,end。end是不包括最后一个元素的,实际上的元素是start->end-1;因此在主函数中传入的end函数应该为size/size-1。start的参数没有需要注意的

2.在robAction函数中,dp函数的大小是:end-start。初始化的时候,dp[0]和dp[1];

3.对dp函数遍历的时候,一定要分清楚变量。

for(int i=2;i<size;i++){

    dp[i]=Math.max(dp[i-1],dp[i-2]+nums[start+i]);

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/798372.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

获奖案例回顾|基于卫星遥感和无人机的水稻全流程风险减量项目

引言 在现代农业保险领域&#xff0c;技术创新是推动行业进步的关键。珈和科技与太平财险的合作&#xff0c;旨在利用先进的卫星遥感和无人机技术&#xff0c;解决传统农业保险面临的诸多挑战&#xff0c;从而提升保险效率和服务质量。本次分享的项目案例获得了《金融电子化》…

leetcode日记(37)旋转图像

方法是看评论区想出来的&#xff1a;先将矩阵转置&#xff0c;再将每一行逆转 class Solution { public: int n,m,l,k; struct bian{int u;int v;int d; }; void digui(int loc,int c[],vector<bian> bi,int now,int q,bool colour[],int& maxx,bool jg[]){if(q>…

利用宝塔安装一套linux开发环境

更新yum&#xff0c;并且更换阿里镜像源 删除yum文件 cd /etc/yum.repos.d/ 进入yum核心目录 ls sun.repo rm -rf * 删除之前配置的本地源 ls 配置阿里镜像源 wget -O /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo 配置扩展包 wge…

8款值得收藏的App推荐!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 值得一试的大众APP&#xff0c;它可能会给你的生活带来小小的改变。把下面的内容看完&#xff0c;我确信你一定会收获不少。 一、Todo清单——重…

Java之Stream流的笔记--手写版

Stream流通过讲集合或数组转换成链状流式的结构&#xff0c;简化了集合和数组进行排序、筛选、遍历、去重、统计等操作。主要包括创建流、中间操作、终结操作。若流中无终结操作&#xff0c;则中间操作不会执行&#xff1b;流是一次性的&#xff0c;使用完就会失效&#xff0c;…

【 香橙派 AIpro评测】烧系统运行部署LLMS大模型体验Jupyter Lab AI 应用样例(新手入门)

文章目录 一、引言⭐1.1下载镜像烧系统⭐1.2开发板初始化系统配置远程登陆&#x1f496; 远程ssh&#x1f496;查看ubuntu桌面&#x1f496; 远程向日葵 二、部署LLMS大模型2.1 快速启动&#x1f496;拉取代码&#x1f496;下载mode数据&#x1f496;启动模型对话 三、体验 内置…

SpringCloud02_consul概述、功能及下载、服务注册与发现、配置与刷新

文章目录 ①. Euraka为什么被废弃②. consul简介、如何下载③. consul功能及下载④. 服务注册与发现 - 8001改造⑤. 服务注册与发现 - 80改造⑥. 服务配置与刷新Refresh ①. Euraka为什么被废弃 ①. Eureka停更进维 ②. Eureka对初学者不友好,下图为自我保护机制 ③. 阿里巴巴…

多个版本JAVA切换(学习笔记)

多个版本JAVA切换 很多时候&#xff0c;我们电脑上会安装多个版本的java版本&#xff0c;java8&#xff0c;java11&#xff0c;java17等等&#xff0c;这时候如果想要切换java的版本&#xff0c;可以按照以下方式进行 1.检查当前版本的JAVA 同时按下 win r 可以调出运行工具…

Kafka基础入门-代码实操

Kafka是基于发布/订阅模式的消息队列&#xff0c;消息的生产和消费都需要指定主题&#xff0c;因此&#xff0c;我们想要实现消息的传递&#xff0c;第一步必选是创建一个主题&#xff08;Topic&#xff09;。下面我们看下在命令行和代码中都是如何创建主题和实现消息的传递的。…

MySql性能调优04-[MySql事务与锁机制原理]

MySql事务与锁机制原理 从undo与redo日志&#xff0c;理解事务底层ACID底层原理事务四大隔离级别事务底层锁机制和MVCC并发优化机制串行化底层实现机制读已提交和可重复读底层实现MVCC机制详解脏写问题(重要)读已提交&#xff1f;实现机制 BufferPool缓存与redo日志是如何提升事…

【AI大模型】李彦宏从“卷模型”到“卷应用”的深度解析:卷用户场景卷能给用户解决什么问题

文章目录 一、理解李彦宏的发言1.1 李彦宏的核心观点1.2 背景分析 二、技术发展&#xff1a;从辨别式到生成式2.1 辨别式AI技术2.2 生成式AI技术2.3 技术发展的挑战 三、“卷应用”&#xff1a;聚焦实际应用与价值3.1 应用为王3.2 技术落地的关键 四、“卷场景”&#xff1a;多…

007-端口隔离

端口隔离配置 端口隔离简介 为了实现报文之间的二层隔离&#xff0c;可以将不同的端口加入不同的VLAN&#xff0c;但会浪费有限的VLAN资源。采用端口隔离特性&#xff0c;可以实现同一VLAN内端口之间的隔离。 设备支持以下方式进行端口隔离&#xff1a; 基于隔离组的端口隔…

idea中打开静态网页端口是63342而不是8080

问题&#xff1a; 安装了tomcat 并且也配置了环境&#xff0c;但是在tomcat下运行&#xff0c;总是在63342下面显示。这也就意味着&#xff0c;并没有运行到tomcat环境下。 找了好几个教程&#xff08;中间还去学习了maven&#xff0c;因为跟的教程里面&#xff0c;没有maven,但…

LabVIEW心电信号自动测试系统

开发了一种基于LabVIEW的心电信号自动测试系统&#xff0c;通过LabVIEW开发的上位机软件&#xff0c;实现对心电信号的实时采集、分析和自动化测试。系统包括心电信号采集模块、信号处理模块和自动化测试模块&#xff0c;能够高效、准确地完成心电信号的测量与分析。 硬件系统…

EmlogPro资源博客主题assets源码_仿ripro日主题

EmlogPro资源博客主题assets源码&#xff0c;有点像ripro日主题&#xff0c;做资源网非常合适&#xff0c;首页支持幻灯片&#xff0c;分类展示&#xff0c;本月热门资源。 源码下载&#xff1a;assets.zip 需要按照安装说明使用&#xff01; 我看了一下很多地方还有点问题&…

Open3d入门 一文读懂三维点云

三维点云技术的发展始于20世纪60年代&#xff0c;随着激光雷达和三维扫描技术的进步&#xff0c;在建筑、考古、地理信息系统和制造等领域得到了广泛应用。20世纪90年代&#xff0c;随着计算机处理能力的提升&#xff0c;点云数据的采集和处理变得更加高效&#xff0c;推动了自…

[数仓]十二、离线数仓(Atlas元数据管理)

第1章 Atlas入门 1.1 Atlas概述 Apache Atlas为组织提供开放式元数据管理和治理功能,用以构建其数据资产目录,对这些资产进行分类和管理,并为数据分析师和数据治理团队,提供围绕这些数据资产的协作功能。 Atlas的具体功能如下: 元数据分类 支持对元数据进行分类管理,例…

深入探讨:CPU问题的深度分析与调优

引言 你是否曾经遇到过这样的情况:系统运行突然变慢,用户抱怨不断,检查后发现CPU使用率居高不下?这时候,你会如何解决?本文将详细解析CPU问题的分析与调优方法,帮助你在面对类似问题时游刃有余。 案例分析:一次CPU性能瓶颈的解决过程 某知名互联网公司在一次促销活动…

Jenkins中Node节点与构建任务

目录 节点在 Jenkins 中的主要作用 1. 分布式构建 分布式处理 负载均衡 2. 提供不同的运行环境 多平台支持 特殊环境需求 3. 提高资源利用率 动态资源管理 云端集成 4. 提供隔离和安全性 任务隔离 权限控制 5. 提高可扩展性 横向扩展 高可用性 Jenkins 主服务…

<数据集>绝缘子缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;2139张 标注数量(xml文件个数)&#xff1a;2139 标注数量(txt文件个数)&#xff1a;2139 标注类别数&#xff1a;8 标注类别名称&#xff1a;[insulator, broken disc, pollution-flashover, Two glass, Glassdirt…