韦东山嵌入式linux系列-具体单板的 LED 驱动程序

笔者使用的是STM32MP157的板子

1 怎么写 LED 驱动程序?

详细步骤如下:
① 看原理图确定引脚,确定引脚输出什么电平才能点亮/熄灭 LED
② 看主芯片手册,确定寄存器操作方法:哪些寄存器?哪些位?地址是?
③ 编写驱动:先写框架,再写硬件操作的代码

注意:在芯片手册中确定的寄存器地址被称为物理地址,在 Linux 内核中无法直接使用。

需要使用内核提供的 ioremap 把物理地址映射为虚拟地址,使用虚拟地址。

ioremap 函数的使用:

#include <asm/io.h>
void __iomem *ioremap(resource_size_t res_cookie, size_t size);

把物理地址 phys_addr 开始的一段空间(大小为 size),映射为虚拟地址;返回值是该段虚拟地址的首地址。

实际上,它是按页(4096 字节)进行映射的,是整页整页地映射的。
假设 phys_addr = 0x10002, size=4, ioremap 的内部实现是:
a) phys_addr 按页取整,得到地址 0x10000
b) size 按页取整,得到 4096
c) 把起始地址 0x10000,大小为 4096 的这一块物理地址空间,映射到虚拟地址空间,
假设得到的虚拟空间起始地址为 0xf0010000
d) 那么 phys_addr = 0x10002 对应的 virt_addr = 0xf0010002
③ 不再使用该段虚拟地址时,要 iounmap(virt_addr):

void iounmap(volatile void __iomem *cookie);

为什么有ioremap,这里解释的很清楚了。

同一个程序,同时运行2次,在内存中有两份代码,他们地址是不同的,但是打印出来的结果是一样的(虚拟地址),主要是MMU(内存管理单元)在起作用,完成物理地址到虚拟地址的转换。

感怪怪的,图中代码是全局变量

根据进程号转换成不同的物理地址。MMU将物理地址映射成虚拟地址,内核通过虚拟地址访问uart等硬件。

2 修改

修改之期的led_operations结构体,由它控制点灯的个数

led_operations.h

#ifndef LED_OPERATIONS_H
#define LED_OPERATIONS_H

struct led_operations {
	int num;								// 灯的数量
    int (*init) (int which);                // 初始化LED,which是哪一个LED
    int (*ctl) (int which, char status);     // 控制LED,which-哪一个LED,status-1亮,0灭
};

// 返回结构体指针
struct led_operations* get_board_led_operations(void);


#endif

stmp32mp157.c

(主要框架还是board_demo.c的,结合了之前的 韦东山嵌入式linux系列-LED驱动程序-CSDN博客)

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/mutex.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <linux/device.h>

#include "led_operations.h"

// 不能使用物理地址,需要映射
// 1寄存器
// RCC_PLL4CR地址:0x50000000 + 0x894,提供时钟的
static volatile unsigned int* RCC_PLL4CR;

// 2使能GPIOA本身
// RCC_MP_AHB4ENSETR地址:0x50000000 + 0xA28
static volatile unsigned int* RCC_MP_AHB4ENSETR;

// 3设置引脚为输出模式
// GPIOA_MODER地址:0x50002000 + 0x00,设置bit[21:20]=0b01,用于输出模式
static volatile unsigned int* GPIOA_MODER;

// 4设置输出电平
// 方法2:直接写寄存器,一次操作即可,高效
// GPIOA_BSRR地址: 0x50002000 + 0x18
static volatile unsigned int* GPIOA_BSRR;


// init函数-配置引脚,把引脚配置成GPIO输出功能
static int board_demo_led_init(int which)
{
	printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which);
	// 之前没有映射,就映射
	if (!RCC_PLL4CR)
	{
		// 驱动程序访问硬件,必须先ioremap,在这里映射,映射的是一页4k的地址,参考
		// ioremap(base_phy, size);
		// 1寄存器
		// RCC_PLL4CR地址:0x50000000 + 0x894,提供时钟的
		// static volatile unsigned int* RCC_PLL4CR;
		RCC_PLL4CR = ioremap(0x50000000 + 0x894, 4);

		// 2使能GPIOA本身
		// RCC_MP_AHB4ENSETR地址:0x50000000 + 0xA28
		// static volatile unsigned int* RCC_MP_AHB4ENSETR;
		RCC_MP_AHB4ENSETR = ioremap(0x50000000 + 0xA28, 4);

		// 3设置引脚为输出模式
		// GPIOA_MODER地址:0x50002000 + 0x00,设置bit[21:20]=0b01,用于输出模式
		// static volatile unsigned int* GPIOA_MODER;
		GPIOA_MODER = ioremap(0x50002000 + 0x00, 4);


		// 4设置输出电平
		// 方法2:直接写寄存器,一次操作即可,高效
		// GPIOA_BSRR地址: 0x50002000 + 0x18
		// static volatile unsigned int* GPIOA_BSRR;
		GPIOA_BSRR = ioremap(0x50002000 + 0x18, 4);
	}

	// 初始化引脚
	if (which == 0)
	{
		// 使能PLL4,是所有GPIO的时钟
		*RCC_PLL4CR |= (1 << 0);					// 设置bit0为1
		while ((*RCC_PLL4CR & (1 << 1)) == 0);		// 如果bit1一直为0的话,就等待
		
		// 使能GPIOA
		*RCC_MP_AHB4ENSETR |= (1 << 0); 			// 1左移0位
		
		// 将GPIOA的第十个引脚配置成GPIO
		// 配置GPIO是输出模式,只有用户程序open的时候,才表示要使用这个引脚,这个时候再配置引脚	
		*GPIOA_MODER &= ~(3 << 20); 				// 清零 11左移20位,取反,
		*GPIOA_MODER |= (1 << 20);					// 20位设置成1,配置成01,输出模式
	}
	
	return 0;
}

// ctl函数-通过参数把引脚设置成高/低电平
static int board_demo_led_ctl(int which, char status)
{
	printk("%s %s line %d, led %d, %s\n", 
		__FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off");
	// 设置高/低电平
	if (which == 0)
	{
		// 设置GPIOA10寄存器1/0
		if (status)
		{
			// 设置led on,让引脚输出低电平
			*GPIOA_BSRR =  (1 << 26);				// 1左移26
			
		}
		else
		{
			// 设置led off,让引脚输出高电平
			*GPIOA_BSRR =  (1 << 10);				// 1左移10
		}

	}
		
	return 0;
}

// 加一个num属性
static struct led_operations board_demo_led_operations = {
	.num = 1,
	.init = board_demo_led_init,
	.ctl = board_demo_led_ctl,
};

// 返回结构体
struct led_operations* get_board_led_operations(void)
{
	return &board_demo_led_operations;
}

led_drv.c

/*************************************************************************
 > File Name: led.drv.c
 > Author: Winter
 > Created Time: Sun 07 Jul 2024 12:35:19 AM EDT
 ************************************************************************/

#include <linux/module.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include "led_operations.h"

// #define LED_NUM 2


// 1确定主设备号,也可以让内核分配
static int major = 0;				// 让内核分配
static struct class *led_class;
struct led_operations* p_led_operations;





#define MIN(a, b) (a < b ? a : b)

// 3 实现对应的 drv_open/drv_read/drv_write 等函数,填入 file_operations 结构体
static ssize_t led_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	return 0;
}

// write(fd, &val, 1);
static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
	int err;
	char status;
	struct inode* node;
	int minor;
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	// 把用户区的数据buf拷贝到内核区status,即向写到内核status中写数据
	err = copy_from_user(&status, buf, 1);
	// 根据次设备号和status控制LED
	node = file_inode(file);
	minor = iminor(node);
	p_led_operations->ctl(minor, status);

	return 1;
}

static int led_drv_open (struct inode *node, struct file *file)
{
	int minor;
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	// 得到次设备号
	minor = iminor(node);
	
	// 根据次设备号初始化LED
	p_led_operations->init(minor);
	return 0;
}

static int led_drv_close (struct inode *node, struct file *file)
{
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	return 0;
}


// 2定义自己的 file_operations 结构体
static struct file_operations led_drv = {
	.owner = THIS_MODULE,
	.open = led_drv_open,
	.read = led_drv_read,
	.write = led_drv_write,
	.release = led_drv_close,
};


// 4把 file_operations 结构体告诉内核: register_chrdev
// 5谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数
static int __init led_init(void)
{
	int err, i;	
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	// 注册led_drv,返回主设备号
	major = register_chrdev(0, "winter_led", &led_drv);  /* /dev/led */
	// 创建class
	led_class = class_create(THIS_MODULE, "led_class");
	err = PTR_ERR(led_class);
	if (IS_ERR(led_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "led_class");
		return -1;
	}
	// 入口函数获得结构体指针
	p_led_operations = get_board_led_operations();
	
	// 创建device
	// 根据次设备号访问多个LED
//	device_create(led_class, NULL, MKDEV(major, 0), NULL, "winter_led0"); /* /dev/winter_led0 */
//	device_create(led_class, NULL, MKDEV(major, 1), NULL, "winter_led1"); /* /dev/winter_led1 */
	for (i = 0; i < p_led_operations->num; i++)
	{
		device_create(led_class, NULL, MKDEV(major, i), NULL, "winter_led%d", i);
	}
	
	return 0;
}



// 6有入口函数就应该有出口函数:卸载驱动程序时,出口函数调用unregister_chrdev
static void __exit led_exit(void)
{
	int i;
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	for (i = 0; i < p_led_operations->num; i++)
	{
		device_destroy(led_class, MKDEV(major, i));
	}
	class_destroy(led_class);
	// 卸载
	unregister_chrdev(major, "winter_led");
}


// 7其他完善:提供设备信息,自动创建设备节点: class_create,device_create
module_init(led_init);
module_exit(led_exit);

MODULE_LICENSE("GPL");

led_drv_test.c

/*************************************************************************
 > File Name: hello_test.c
 > Author: Winter
 > Created Time: Sun 07 Jul 2024 01:39:39 AM EDT
 ************************************************************************/

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
 * ./led_drv  /dev/winter_led0 on
 * ./led_drv  /dev/winter_led0 off
 */
int main(int argc, char **argv)
{
	int fd;
	char status;

	
	/* 1. 判断参数 */
	if (argc < 2) 
	{
		printf("Usage: %s <dev> <on | off>\n", argv[0]);
		return -1;
	}

	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	/* 3. 写文件 */
	if (0 == strcmp(argv[2], "on"))
	{
		status = 1;
	}
	else
	{
		status = 0;
	}
	write(fd, &status, 1);
	
	close(fd);
	
	return 0;
}

Makefile

# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册

KERN_DIR = /home/book/100ask_stm32mp157_pro-sdk/Linux-5.4

all:
	make -C $(KERN_DIR) M=`pwd` modules 
	$(CROSS_COMPILE)gcc -o led_drv_test led_drv_test.c 

clean:
	make -C $(KERN_DIR) M=`pwd` modules clean
	rm -rf modules.order
	rm -f led_drv_test

# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.o

# leddrv.c board_demo.c 编译成 100ask.ko
winter_led-y := led_drv.o stm32mp157.o
obj-m	+= winter_led.o


编译

make

3 测试

在开发板挂载 Ubuntu 的NFS目录

mount -t nfs -o nolock,vers=3 192.168.5.11:/home/book/nfs_rootfs/ /mnt

将ko文件和测试代码拷贝到挂载目录,安装驱动

insmod winter_led.ko

执行测试程序

./led_drv_test /dev/winter_led0 on
./led_drv_test /dev/winter_led0 off

板子上只有log,关掉【心跳灯】

ls /sys/class/leds/
echo none > /sys/class/leds/heartbeat/trigger

再执行on/off就可以看到灯的亮灭了

4 思考

a.在驱动里有 ioremap,什么时候执行 iounmap?请完善程序

答:需要在led_operations.h和stmp32mp157.c中加一个close函数,在close函数中执行iounmap操作,在led_drv.c的close函数中调用。

似乎不太行

b.视频里我们只实现了点一个 LED,修改代码支持两个 LED。

答:需要看原理图和手册,在stmp32mp157.c的init函数中配置引脚和输出高低电平。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/797114.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pytorch-pytorch之LSTM

目录 1. nn.LSTM2. nn.LSTMCell 1. nn.LSTM 初始化函数输入参数与RNN相同&#xff0c;分别是input_size&#xff0c;hidden_size和num_layer foward函数也与RNN类似&#xff0c;只不过返回值除了out外&#xff0c;ht变为(ht,ct) 代码见下图&#xff1a; 2. nn.LSTMCell 初…

基于与STM32的加湿器之旋转编码器驱动

1.简介 旋转编码器&#xff0c;也被称为轴编码器或脉冲编码器&#xff08;SPC&#xff09;&#xff0c;是一种将旋转的机械位移量转换为电气信号的传感器&#xff0c;其信号可用于检测位置、速度等。 2.工作原理 旋转编码器的工作原理主要基于光电转换或磁电转换。以光电式旋转…

电子签章 签到 互动 打卡 创意印章 支持小程序 H5 App

电子签章 签到 互动 打卡 创意印章 支持小程序 H5 App 定制化

华为防火墙nat和智能选路配置

要求&#xff1a; 7&#xff0c;办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 8&#xff0c;分公司设备可以通过总公司的移动链路和电信链路访问到Dmz区的http服务器 9&#xff0c;多出口环境基于带宽比例进行选路&…

k8s集群新增节点

目前集群状态 如K8S 集群搭建中规划的集群一样 Masternode01node02IP192.168.100.100192.168.100.101192.168.100.102OSCent OS 7.9Cent OS 7.9Cent OS 7.9 目前打算新增节点node03 Masternode01node02node03IP192.168.100.100192.168.100.101192.168.100.102192.168.100.1…

NLP之词的重要性

文章目录 何为重要词TF*IDFTF*IDF其他版本TFIDF 算法特点TF*IDF的优势TF*IDF劣势 TF*IDF的应用搜索引擎文本摘要文本相似度计算 上一篇文章介绍了新词的发现&#xff0c;用内部凝固度和左右熵来发现新词。这时候机器对一篇文章有了对词的一定理解&#xff0c;这时我们让机器上升…

了解Maven

一.环境搭建 如果使用的是社区版 版本要求为&#xff1a;2021.1-2022.1.4 如果使用的是idea专业版就无需版本要求,专业版下载私信我&#xff0c;免费教你下载 二&#xff0c;Maven 什么是Maven&#xff0c;也就是一个项目管理工具&#xff0c;用来基于pom的概念&#xff0c…

k8s(五)---名称空间

五、名称空间 名称空间是k8s划分不同工作空间的逻辑单位,是k8s资源逻辑隔离的机&#xff0c;。可以给不同的租户&#xff0c;不同的环境、不同的项目创建对应的命名空间。 1、查看名称空间 kubectl get ns kubectl get namespaces 此处展示了四个命名空间 2、管理名称空间 1…

【数智化案例展】沃太能源——MES系统建设引领智能制造新篇章

‍ 联想集团案例 本项目案例由联想集团投递并参与数据猿与上海大数据联盟联合推出的《2024中国数智化转型升级创新服务企业》榜单/奖项评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 沃太能源股份有限公司&#xff0c;一家在储能产品及智慧能源管理方案领域享有盛誉的…

一 GD32 MCU 开发环境搭建

GD32 系列为通用型 MCU &#xff0c;所以开发环境也可以使用通用型的 IDE &#xff0c;目前使用较多的是 KEIL、 IAR 、 GCC 和 Embedded Builder &#xff0c;客户可以根据个人喜好来选择相应的开发环境。 目录 1、使用 Keil 开发 GD32 目前市面通用的MDK for ARM版本有Kei…

[笔记] SEW的振动分析工具DUV40A

1.便携式振动分析仪 DUV40A 文档编号&#xff1a;26871998/EN SEW是一家国际化的大型的机械设备供应商。产品线涵盖电机&#xff0c;减速机&#xff0c;变频器等全系列动力设备。DUV40A是他自己设计的一款振动分析工具。 我们先看一下它的软硬件参数&#xff1a; 内置两路传…

LiteOS增加执行自定义源码

开发过程注意事项&#xff1a; 源码工程路径不能太长 源码工程路径不能有中文 一定要关闭360等杀毒软件&#xff0c;否则编译的打包阶段会出错 增加自定义源码的步骤: 1.创建源码目录 2. 创建源文件 新建myhello目录后&#xff0c;再此目录下再新建源文件myhello_demo.c 3. 编…

Java常用排序算法

冒泡排序&#xff08;Bubble Sort&#xff09; arr[0] 与 arr[1]比较&#xff0c;如果前面元素大就交换&#xff0c;如果后边元素大就不交换。然后依次arr[1]与arr[2]比较&#xff0c;第一轮将最大值排到最后一位。 第二轮arr.length-1个元素进行比较&#xff0c;将第二大元素…

视频播放器的问题

<template><div class"app-container"><el-form :model"queryParam" ref"queryForm" :inline"true"><el-form-item label"题目ID&#xff1a;"><el-input v-model"queryParam.id" cle…

.NET MAUI开源架构_1.学习资源分享

最近需要开发Android的App&#xff0c;想预研下使用.NET开源架构.NET MAUI来开发App程序。因此网上搜索了下相关资料&#xff0c;现在把我查询的结果记录下&#xff0c;方便后面学习。 1.官方文档 1.1MAUI官方学习网站 .NET Multi-Platform App UI 文档 - .NET MAUI | Micro…

Rust 测试的组织结构

测试的组织结构 本章一开始就提到&#xff0c;测试是一个复杂的概念&#xff0c;而且不同的开发者也采用不同的技术和组织。Rust 社区倾向于根据测试的两个主要分类来考虑问题&#xff1a;单元测试&#xff08;unit tests&#xff09;与 集成测试&#xff08;integration test…

论文阅读 - Intriguing properties of neural networks

Intriguing properties of neural networks 经典论文、对抗样本领域的开山之作 发布时间&#xff1a;2014 论文链接: https://arxiv.org/pdf/1312.6199.pdf 作者&#xff1a;Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,…

MongoDB教程(四):mongoDB索引

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、MongoD…

【RHCE】综合实验0710综合实验

题目&#xff1a; 主服务器192.168.244.130 防火墙允许服务的放行&#xff1a; selinux放行 [rootlocalhost ~]# ll -Z /nfs/rhce 总用量 4 -rw-r--r--. 1 root root unconfined_u:object_r:default_t:s0 8 7月 10 16:52 index.html -rw-r--r--. 1 nobody nobody system_…

【深度学习 pytorch】迁移学习 (迁移ResNet18)

李宏毅深度学习笔记 《深度学习原理Pytorch实战》 https://blog.csdn.net/peter6768/article/details/135712687 迁移学习 实际应用中很多任务的数据的标注成本很高&#xff0c;无法获得充足的训练数据&#xff0c;这种情况可以使用迁移学习(transfer learning)。假设A、B是两…