【matlab】大数据基础与应用实例

目录

引言

线性回归模型

基本形式

最小二乘法

多元线性回归

线性回归的假设

模型评估

应用

独热编码

原理

应用场景

优点

缺点

数据收集

数据可视化

数据处理与分析

完整代码


引言

线性回归模型

线性回归模型是一种用于预测连续值输出(或称为因变量)的统计方法,它基于一个或多个自变量(或称为解释变量、特征)与因变量之间的线性关系。在线性回归中,我们假设因变量与自变量之间的关系可以通过一个线性方程来描述,即因变量是自变量的线性组合加上一个误差项。

基本形式

线性回归模型的基本形式可以表示为:

y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_nx_n+\epsilon

其中:

  • y 是因变量(预测目标)。
  • β0​ 是截距项(或称为常数项)。
  • β1​,β2​,…,βn​ 是回归系数(或称为斜率),它们表示了各自变量对因变量的影响程度。
  • x1​,x2​,…,xn​ 是自变量(特征)。
  • ϵ 是误差项,表示模型未能捕捉到的变异或随机噪声。
最小二乘法

线性回归模型通常使用最小二乘法(Least Squares Method)来估计回归系数 β0​,β1​,…,βn​。最小二乘法的目标是找到一组回归系数,使得预测值与实际值之间的平方误差和(即残差平方和,RSS)最小。

多元线性回归

当模型包含多个自变量时,称为多元线性回归。在多元线性回归中,我们同样使用最小二乘法来估计回归系数,但需要考虑多个自变量之间的相互作用。

线性回归的假设

线性回归模型的有效性基于以下假设:

  1. 线性关系:自变量与因变量之间存在线性关系。
  2. 独立性:观测值之间相互独立。
  3. 同方差性:误差项 ϵ 的方差在所有观测值中都是相同的。
  4. 正态性:误差项 ϵ 服从正态分布。
模型评估

线性回归模型的性能可以通过多种指标来评估,包括但不限于:

  • 均方误差(MSE):预测值与实际值之差的平方的平均值。
  • 均方根误差(RMSE):MSE的平方根,与原始数据的量纲相同,便于理解。
  • 决定系数(R²):表示模型预测值与实际值之间的拟合程度,取值范围从0到1,值越大表示模型拟合得越好。
应用

线性回归模型广泛应用于各种领域,如经济学、统计学、工程学和自然科学等,用于预测、趋势分析和因果推断等。

独热编码

独热编码(One-Hot Encoding),又称一位有效编码,是数据预处理中常用的一种技术,主要用于处理分类数据。在机器学习和数据科学领域,独热编码是一种将分类变量(离散特征、无序特征)转换为数值型数据的方法,以便机器学习算法能够处理。以下是对独热编码的详细介绍:

原理

独热编码使用N位状态寄存器来对N个状态进行编码,每个状态都有其独立的寄存器位,且在任意时刻,只有一位是有效的(即设置为1),其余位都是0。这种方法通过将每个分类值映射到一个唯一的二进制向量上,确保模型正确理解非数值分类特征,同时避免了模型错误地解释分类值之间可能存在的数值关系。

应用场景

独热编码特别适用于处理那些具有明确、有限且通常不带有数值意义的分类值的数据。例如,在性别特征中,“男”和“女”之间没有数值上的大小或顺序关系;在颜色特征中,“红”、“绿”和“蓝”也是纯粹的分类标签,没有隐含的数值含义。

优点
  1. 计算机友好:计算机更擅长处理数字而不是文字或标签。使用独热编码,我们可以将分类数据转化为数值型数据,使得计算机能够更轻松地理解和处理。
  2. 防止大小关系误解:如果我们直接用数字来表示分类(如0、1、2等),计算机可能会误以为这些数字之间存在大小或顺序关系。独热编码避免了这种误解。
  3. 适用于各种算法:许多机器学习算法,尤其是涉及距离计算的算法(如K近邻算法),更适合处理数值型数据。独热编码将分类数据转换为二进制形式,使得这些算法能够更好地处理。
  4. 模型的需求:在深度学习等领域,神经网络的输入层通常期望是数值型数据。独热编码为我们提供了一种有效的方式,将分类数据转换为适用于神经网络的形式。
缺点
  1. 维度爆炸:独热编码会在原始特征的基础上引入大量的新特征,导致维度爆炸,特别是当分类数量较多时。这可能增加计算复杂性和存储空间需求。
  2. 不适用于高基数特征:当分类的类别数量非常大时,独热编码可能变得不切实际。这可能导致训练数据过于稀疏,影响模型的性能。
  3. 信息冗余:由于每个类别都有一个独立的特征,独热编码可能引入冗余信息。对于某些模型,这可能导致冗余特征的存在。
  4. 不考虑特征之间的关联性:独热编码将每个类别视为独立的特征,不考虑类别之间的关联性。这可能忽略了一些信息,特别是对于具有内在顺序关系的分类数据。

综上所述,独热编码是一种有效的数据预处理技术,能够将分类数据转换为适合机器学习算法处理的数值型数据。然而,在使用独热编码时需要注意其优缺点以及适用场景,并结合实际情况进行选择和调整。

数据收集

这里选择了电影相关数据集如图所示:

数据可视化

% 1、散点图,展示评分与评分人数的关系
figure;
scatter(data.Rating, data.NumRatings, 'filled');
xlabel('评分');
ylabel('评分人数');
title('电影评分与评分人数关系');

% 2、直方图,展示电影评分的分布
figure;
histogram(data.Rating, 'BinWidth', 0.5);
xlabel('评分');
ylabel('电影数量');
title('电影评分分布');

% 3、条形图,展示各个国家/地区电影数量
figure;
categories = categorical(data.CountryRegion);
uniqueCategories = unique(categories);
counts = histcounts(categories, 'Normalization', 'count');
bar(uniqueCategories, counts);
xlabel('国家/地区');
ylabel('电影数量');
title('各个国家/地区电影数量');

% 4、盒须图,展示电影时长的分布
figure;
boxplot(data.Duration);
ylabel('时长(分钟)');
title('电影时长分布');


% 5、饼状图,统计不同类型电影的数量
for i = 1:length(uniqueGenres)
    genreCounts(i) = sum(genres == uniqueGenres(i));
end
figure;
p = pie(genreCounts, uniqueGenres);
title('不同类型电影的分布');

数据处理与分析

对电影评分数据的预处理、特征编码、线性回归模型的训练和交叉验证,以及最后绘制实际评分与预测评分的对比图。

完整代码

clc;

% 读取Excel文件
data = readtable('data.xlsx');

%数据预处理
% 数据清洗,删除包含空值的行
data = rmmissing(data);
% 将中文列名映射到英文变量名
data.Properties.VariableNames = {'Movie', 'Year', 'Rating', 'NumRatings', 'Actors', 'Genre', 'CountryRegion', 'Duration'};
% 时长列是字符串,需要转换为数值
data.Duration = str2double(regexprep(data.Duration, '[^\d]', ''));
%将类别特征转换为数值特征
genres = string(data.Genre);  
uniqueGenres = unique(genres);
genreCounts = zeros(size(uniqueGenres));


%数据可视化
% 1、散点图,展示评分与评分人数的关系
figure;
scatter(data.Rating, data.NumRatings, 'filled');
xlabel('评分');
ylabel('评分人数');
title('电影评分与评分人数关系');

% 2、直方图,展示电影评分的分布
figure;
histogram(data.Rating, 'BinWidth', 0.5);
xlabel('评分');
ylabel('电影数量');
title('电影评分分布');

% 3、条形图,展示各个国家/地区电影数量
figure;
categories = categorical(data.CountryRegion);
uniqueCategories = unique(categories);
counts = histcounts(categories, 'Normalization', 'count');
bar(uniqueCategories, counts);
xlabel('国家/地区');
ylabel('电影数量');
title('各个国家/地区电影数量');


% 4、盒须图,展示电影时长的分布
figure;
boxplot(data.Duration);
ylabel('时长(分钟)');
title('电影时长分布');


% 5、饼状图,统计不同类型电影的数量
for i = 1:length(uniqueGenres)
    genreCounts(i) = sum(genres == uniqueGenres(i));
end
figure;
p = pie(genreCounts, uniqueGenres);
title('不同类型电影的分布');


% 确保年份,评分人数和时长列为数值类型
data.Year = str2double(string(data.Year));
data.NumRatings = str2double(string(data.NumRatings));
data.Duration = str2double(string(data.Duration));


% 数据预处理
% 使用独热编码(One-Hot Encoding)处理类型特征
genreMatrix = zeros(height(data), length(uniqueGenres));
for i = 1:height(data)
    genreIndices = ismember(uniqueGenres, strsplit(genres(i), ', '));
    genreMatrix(i, genreIndices) = 1;
end

% 组合所选特征
X = [data.Year, data.NumRatings, data.Duration, genreMatrix];
y = data.Rating;

% 标准化特征矩阵
X = normalize(X);

% 使用线性回归模型进行k折交叉验证
k = 5; % 5折交叉验证
cv = cvpartition(height(data), 'KFold', k);

mseValues = zeros(k, 1); % 存储每折的均方误差
yPredAll = cell(k, 1); 
for i = 1:k
    trainIdx = training(cv, i);
    testIdx = test(cv, i);
    
    % 训练模型
    model = fitlm(X(trainIdx, :), y(trainIdx));
    
    % 测试模型
    yPred = predict(model, X(testIdx, :));
    yPredAll{i} = yPred; % 存储每折的预测值
    
    % 计算均方误差
    mseValues(i) = mean((y(testIdx) - yPred).^2);
end

% 输出平均均方误差
averageMSE = mean(mseValues);
disp(['平均均方误差: ', num2str(averageMSE)]);

% 绘制实际值和预测值的曲线图
figure;
hold on;

% 初始化一个数组来存储所有实际值和预测值
allYActual = [];
allYPred = [];

for i = 1:k
    testIdx = test(cv, i);
    yActual = y(testIdx);
    yPred = yPredAll{i};
    
    % 检查向量长度是否一致
    if length(yActual) == length(yPred)
        allYActual = [allYActual; yActual]; % 将每折的实际值添加到总数组中
        allYPred = [allYPred; yPred];       % 将每折的预测值添加到总数组中
    else
        warning(['Fold ', num2str(i), ' 的预测值和实际值长度不匹配']);
    end
end

% 根据索引排序,以便绘制曲线图
[~, sortIdx] = sort(allYActual);
sortedYActual = allYActual(sortIdx);
sortedYPred = allYPred(sortIdx);

% 绘制曲线图
plot(sortedYActual, '-b', 'DisplayName', '实际值'); % 蓝色实线表示实际值
hold on;
plot(sortedYPred, '-r', 'DisplayName', '预测值');   % 红色实线表示预测值

xlabel('样本索引');
ylabel('评分');
title('实际值与预测值曲线图');
legend('show'); % 显示图例
hold off;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/796847.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一文了解MySQL的表级锁

文章目录 ☃️概述☃️表级锁❄️❄️介绍❄️❄️表锁❄️❄️元数据锁❄️❄️意向锁⛷️⛷️⛷️ 介绍 ☃️概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外&#xff0…

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程

【PVE】新增2.5G网卡作为主网卡暨iperf测速流程 新增网卡 新增网卡的首先当然需要关闭PVE母机,把新网卡插上,我用淘宝遥现金搞了个红包,花了26元买了块SSU的2.5G网卡。说实话这个价位连散热片都没有,确实挺丐的。稍后测下速度看…

Spring源码十九:Bean实例化流程二

上一篇我们在Spring源码十八:Bean实例化流程一 中,主要讨论了Spring在实例化前的两重要准备工作,1、获取我们前面注册好的BeanDefinition,将GenericBeanDefinition封装为RootBeanDefinition如果Bean Definition只存在父容器中&…

iNavFlight飞控固件学习-1《开发环境搭建》

目录 文章目录 目录摘要1.官网2.形成Linux开发环境工具2.1 简介2.2 相关工具2.2.1 Ubuntu / Debian系统配置命令2.2.2 Fedora系统配置命令2.2.3 Fedora系统配置命令 2.3 克隆存储库2.4 构建工具2.5 使用cmake2.6 构建固件2.7 清除2.8 cmake 缓存维护2.9 编译通过ninja2.10 更新…

面试内容集合

用例设计方法 (一)等价类划分  常见的软件测试面试题划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理…

自注意力简介

在注意力机制中,每个查询都会关注所有的键值对并生成一个注意力输出。如果查询q,键k和值v都来自于同一组输入,那么这个注意力就被称为是自注意力(self-attention)。自注意力这部分理论,我觉得台大李宏毅老师…

FFmpeg开发环境搭建

FFmpeg是音视频开发必备的库,也是唯一的库。本文主要讲解在ubuntu22和macOS14环境下的编译安装。 为什么要自己编译呢?其中一个很重要的原因就是ffmpeg在编译时可以加入很多插件,这种特定的库网络上可能找不到编译好的版本,另外如…

在linux中查找 / 目录下的以.jar结尾的文件(find / -name *.jar)

文章目录 1、查找 / 目录下的以.jar结尾的文件 1、查找 / 目录下的以.jar结尾的文件 [rootiZuf6332h890vozldoxcprZ ~]# find / -name *.jar /etc/java/java-1.8.0-openjdk/java-1.8.0-openjdk-1.8.0.342.b07-1.el9_0.x86_64/lib/security/policy/limited/US_export_policy.ja…

Spring MVC 中 HttpMessageConverter 转换器

1. Spring MVC 中 HttpMessageConverter 转换器 文章目录 1. Spring MVC 中 HttpMessageConverter 转换器2. 补充:什么是 HTTP 消息3. 转换器3.1 转换器转换的是什么 4. Spring MVC中的 AJAX 请求5. ResponseBody 将服务器端的 return 返回值转化为“字符串(JSON格式…

RIP路由协议概述

RIP【Routing Information Protocol】 RIP是为TCP/IP 环境中开发的第一个路由选择协议标准 RIP是一个【距离——矢量】路由选择协议 当路由器的更新周期为30s到来时,向邻居发送路由表 RIP以跳数作为唯一度量值 RIP工作原理 RIP路由协议向邻居发送整个路由表信息RI…

Linux 复现Docker NAT网络

Linux 复现Docker NAT网络 docker 网络的构成分为宿主机docker0网桥和为容器创建的veth 对构成。这个默认网络命名空间就是我们登陆后日常使用的命名空间 使用ifconfig命令查看到的就是默认网络命名空间,docker0就是网桥,容器会把docker0当成路由&…

JavaDS —— 单链表 与 LinkedList

顺序表和链表区别 ArrayList : 底层使用连续的空间,可以随机访问某下标的元素,时间复杂度为O(1) 但是在插入和删除操作的时候,需要将该位置的后序元素整体往前或者向后移动,时间复杂度为O&…

代码随想录二刷7.22|977.有序数组的平方

暴力解法: ——如果想暴力解决这个问题的话,可以像题目那样,先将每一个元素平方,然后再排序 双指针: ——从题目中找到的信息:这是一个非递减顺序的整数数组,从例子中,可以容易看…

excel 百分位函数 学习

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、函数说明PERCENTILE 函数PERCENTILE.inc 函数PERCENTILE.exc 函数QUARTILE.EXC 函数 二、使用步骤总结 前言 excel 百分位函数 Excel提供了几个函数用于…

数据库MySQL下载安装

MySQL下载安装地址如下: MySQL :: Download MySQL Community Server 1、下载界面 2、点击下载 3、解压记住目录 4、配置my.ini文件 未完..

vector 介绍

1.简述vector 首先我们要大致弄明白vector是一个什么东西,其实vector就是之前我们学过的顺序表,这里直接使用就行了. 定义vector-------->vector<typename> arr 此时的这种定义vector可以理解成为一个数组,而typename可以是各种数据类型,比如string,int,double....…

QT实现自定义带有提示信息的透明环形进度条

1. 概述 做界面开发的童鞋可能都会遇到这样的需求&#xff0c;就是有一些界面点击了之后比较耗时的操作&#xff0c;需要界面给出一个环形进度条的进度反馈信息. 如何来实现这样的需求呢&#xff0c;话不多说&#xff0c;上效果 透明进度条 2. 代码实现 waitfeedbackprogressba…

3-2 多层感知机的从零开始实现

import torch from torch import nn from d2l import torch as d2lbatch_size 256 # 批量大小为256 train_iter, test_iter d2l.load_data_fashion_mnist(batch_size) # load进来训练集和测试集初始化模型参数 回想一下&#xff0c;Fashion-MNIST中的每个图像由 28 28 784…

一文了解5G新通话技术演进与业务模型

5G新通话简介 5G新通话&#xff0c;也被称为VoNR&#xff0c;是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道&#xff08;Data Channel&#xff09;&#xff0c;承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…

红日靶场----(三)1.漏洞利用

上期已经信息收集阶段已经完成&#xff0c;接下来是漏洞利用。 靶场思路 通过信息收集得到两个吧靶场的思路 1、http://192.168.195.33/phpmyadmin/&#xff08;数据库的管理界面&#xff09; root/root 2、http://192.168.195.33/yxcms/index.php?radmin/index/login&am…