语言模型演进:从NLP到LLM的跨越之旅

在人工智能的浩瀚宇宙中,自然语言处理(NLP)一直是一个充满挑战和机遇的领域。随着技术的发展,我们见证了从传统规则到统计机器学习,再到深度学习和预训练模型的演进。如今,我们站在了大型语言模型(LLM)的门槛上,它们正在重新定义我们与机器交流的方式。本文将深入探讨LLM的发展历程、技术路线、以及它们对未来AI领域的影响。

引言

自然语言处理(NLP)的目标是让机器能够理解、解释和生成人类语言。这一领域的发展经历了几个重要的阶段,每个阶段都标志着对语言理解深度的一次飞跃。从早期的基于规则的系统,到统计学习方法,再到深度学习模型,直至今日的大型语言模型(LLM),每一步都是对前一阶段的超越。
在这里插入图片描述

从规则到统计:NLP的早期探索

规则阶段(1956—1992)

在NLP的早期,研究者依赖于手工编写的规则来处理语言。这一阶段的技术栈包括有限状态机和基于规则的系统。例如,Apertium就是一个基于规则的机器翻译系统,它展示了早期研究者如何通过人工整理词典和编写规则来实现语言的自动翻译。
在这里插入图片描述

统计机器学习阶段(1993—2012)

随着时间的推移,研究者开始转向统计学习方法,使用支持向量机(SVM)、隐马尔可夫模型(HMM)、最大熵模型(MaxEnt)和条件随机场(CRF)等工具。这一阶段的特点是少量人工标注领域数据与人工特征工程的结合,标志着从手工编写规则到机器自动从数据中学习知识的转变。
在这里插入图片描述

深度学习的突破:开启新纪元

深度学习阶段(2013—2018)

深度学习的出现为NLP带来了革命性的变化。以编码器-解码器(Encoder-Decoder)、长短期记忆网络(LSTM)、注意力机制(Attention)和嵌入(Embedding)为代表的技术,使得模型能够处理更大规模的数据集,并且几乎不需要人工特征工程。Google的神经机器翻译系统(2016)就是这一阶段的代表之作。
在这里插入图片描述

预训练模型的兴起:知识的自我发现

预训练阶段(2018—2022)

预训练模型的出现标志着NLP领域的又一次飞跃。以Transformer和注意力机制为核心的技术栈,结合海量无标注数据进行自监督学习,生成通用知识,再通过微调适应特定任务。这一阶段的突变性非常高,因为它扩展了可利用的数据范围,从标注数据拓展到了非标注数据。
在这里插入图片描述

LLM的新时代:智能与通用性的融合

LLM阶段(2023—?)

LLM代表了语言模型的最新发展,它们通常采用解码器为主的架构,结合了Transformer和强化学习人类反馈(RLHF)。这一阶段的特点是两阶段过程:预训练和与人类对齐。预训练阶段利用海量无标注数据和领域数据,通过自监督学习生成知识;与人类对齐阶段则通过使用习惯和价值观对齐,使模型能够适应各种任务。
在这里插入图片描述
回顾各个发展阶段可以看到以下趋势:

数据: 从数据到知识,越来越多数据被利用起来/未来:更多文本数据、更多其它形态数据→任何数据
算法: 表达能力越来越强;规模越来越大;自主学习能力越来越强;从专业向通用/未来:Transformer目前看够用,新型模型(应该强调学习效率)?→AGI?
人机关系: 位置后移,从教导者到监督者/未来:人机协作,机向人学习→人向机学习?→机器拓展人类知识边界

在这里插入图片描述

LLM技术发展路线:多样化的路径

在过去的几年中,LLM技术发展呈现出多样化的路径,包括BERT模式、GPT模式和T5模式等。每种模式都有其特点和适用场景。
在这里插入图片描述

BERT模式(Encoder-Only)

BERT模式通过双向语言模型预训练和任务微调的两阶段(双向语言模型预训练+任务Fine-tuning)过程,适用于自然语言理解类任务。BERT预训练从通用数据中提取通用知识,而微调则从领域数据中提取领域知识。
在这里插入图片描述
适合解决的任务场景:比较适合自然语言理解类,某个场景的具体任务,专而轻;
在这里插入图片描述

GPT模式(Decoder-Only)

GPT模式则从单向语言模型预训练和zero shot/few shot prompt或指令的一阶段(单向语言模型预训练+zero shot/few shot prompt/Instruct)过程中发展而来,适合自然语言生成类任务。GPT模式的模型通常是目前规模最大的LLM,它们能够处理更广泛的任务。
在这里插入图片描述
适用场景:比较适合自然语言生成类任务,目前规模最大的LLM,都是这种模式:GPT 系列,PaLM,LaMDA……,重而通;生成类任务/通用模型 建议GPT模式;
在这里插入图片描述

T5模式(Encoder-Decoder)

T5模式结合了BERT和GPT的特点,适用于生成和理解任务。T5模式的填空任务(Span Corruption)是一种有效的预训练方法,它在自然语言理解类任务中表现出色。两阶段(单向语言模型预训练+Fine-tuning为主)
在这里插入图片描述
特点:形似GPT,神似Bert
适用场景:生成和理解都行,从效果上看比较适合自然语言理解类任务,国内很多大型LLM采取这种模式;如果是单一领域的自然语言理解类任务,建议使用T5模式;
在这里插入图片描述

为什么超大LLM都是GPT模式

超大LLM:追求zero shot/ few shot/instruct 效果
目前的研究结论

(模型规模不大时):

  • 自然语言理解类:T5模式效果最好。
  • 自然语言生成类:GPT模式效果最好。
  • Zero shot: GPT模式效果最好。
    如果Pretrain后引入多任务fine-tuning,则T5模式效果好(结论存疑:目前的实验Encoder-Decoder都是Decoder-only参数量的两倍,结论是否可靠?)

目前的研究结论(超大规模):
事实:几乎所有超过100B的LLM模型,都采取GPT模式

可能的原因:
1.Encoder-Decoder里的双向attention,损害zero shot能力(Check)
2.Encoder-Decoder结构在生成Token时,只能对Encoder高层做attentionDecoder-only结构在生成Token时,可以逐层Attention,信息更细粒度
3.Encoder-Decoder训练“中间填空”,生成最后单词Next Token,存在不一致性Decoder-only结构训练和生成方式一致

超大LLM的挑战与机遇

随着模型规模的增长,研究者面临着如何有效利用参数空间的挑战。Chinchilla模型的研究表明,在数据充足的情况下,当前的LLM规模可能比理想规模更大,存在参数空间的浪费,然而,Scaling Law也指出,模型规模越大,数据越多,训练越充分,LLM模型的效果越好。比较可行的思路是:先做小(GPT 3本来不应该这么大),再做大(充分利用模型参数后,继续做大)。
在这里插入图片描述

当然鉴于多模态LLM需要更丰富的现实环境感知能力,对此LLM参数也提出更高的要求。
多模态LLM:视觉输入(图片、视频)、听觉输入(音频)、触觉输入(压力)
在这里插入图片描述
面临问题:多模态LLM看着效果还不错,很大程度依赖于人工整理的大数据集

如 ALIGN:1.8B 图文/LAION:5.8B图文数据(经过CLIP过滤,目前最大图文数据)目前是文字带图像飞?

图像处理:自监督技术路线在尝试,尚未走通(对比学习/MAE)/如果能走通会是AI领域另外一次巨大技术突破;

如果能走通,目前的一些图像理解类任务(语义分割/识别等)估计会被融入LLM,进而消失

在这里插入图片描述

提升LLM的复杂推理能力

尽管当前的LLM具备一定的简单推理能力,但在复杂推理方面仍有不足。例如,多位数加法等任务对LLM来说仍然是一个挑战。研究者正在探索如何通过技术手段,如语义分解,将复杂推理能力蒸馏到更小的模型中。
在这里插入图片描述
当然也可以通过能力外包的形式绕过这个问题,如与工具结合:计算能力(外部计算器)、新信息查询(搜索引擎)等能力借助外部工具完成。
在这里插入图片描述

LLM与物理世界的交互

具身智能的概念将LLM与机器人技术结合起来,通过与物理世界的交互,利用强化学习获得具身智能。例如,Google的PaLM-E模型结合了540B的PaLM和22B的ViT,展示了LLM在多模态环境下的潜力。
在这里插入图片描述
在这里插入图片描述

其他研究方向

  1. 新知识的获取:目前有一定困难,也有一些手段(LLM+Retrieval)
  2. 旧知识的修正:目前有一些研究成果,尚需优化
  3. 私域领域知识的融入:Fine-tune?
  4. 更好的理解命令:尚需优化(一本正经的胡说八道)
  5. 训练推理成本的降低:未来一年到两年会快速发展
  6. 中文评测数据集的构建:能力试金石。英文目前有一些评测集,比如HELM/BigBench等,中文缺乏/多任务、高难度、多角度的评测数据集。

结语

本文深入探讨了LLM的发展历程、技术路线以及它们对未来AI领域的影响。LLM的发展不仅仅是技术的进步,更是我们对机器理解能力的一次深刻反思。从规则到统计,再到深度学习和预训练,每一步都为我们提供了新的视角和工具。如今,我们站在大型语言模型的新时代门槛上,面对着前所未有的机遇和挑战。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/796424.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

木舟0基础学习Java的第十六天(异常,分类,自定义异常,注意事项)

异常 异常概述:异常是Java程序运行过程中出现的错误 异常分类:API查找Throwable 1.Error(服务器宕机,数据库崩溃等) 2.Exception C(异常的继承体系)API查RuntimeException 运行时异常:一般是程序员的错误异常可以让我们发现错…

C#实现最短路径算法

创建点集 double r 200 * 500;double width 1920;double height 1080;int col (int)(r / width);int row (int)(r / height);List<(double, double)> list1 new List<(double, double)>();for (int i 0; i < row; i){var y i * height;if (y < r){va…

青年发展型城市成新青择地,期待与挑战并存

随着社会的发展和城市化进程的加快&#xff0c;青年人在选择未来定居地时面临着越来越多的选择。近日&#xff0c;中国青年报社社会调查中心联合问卷网对1500名青年进行的一项调查显示&#xff0c;74.8%的受访青年表示会优先考虑青年发展型城市。那么&#xff0c;青年在选择未来…

编程范式之并发编程

目录 前言1. 并发编程的定义2. 并发编程的特点2.1 任务交替执行2.2 状态共享与同步2.3 并行执行 3. 并发编程的适用场景3.1 高性能计算3.2 I/O 密集型应用3.3 实时系统 4. 并发编程的优点4.1 提高资源利用率4.2 缩短响应时间4.3 提高系统吞吐量 5. 并发编程的缺点5.1 编程复杂性…

gpt-4o看图说话-根据图片回答问题

问题&#xff1a;中国的人口老龄化究竟有多严重&#xff1f; 代码下实现如下&#xff1a;&#xff08;直接调用openai的chat接口&#xff09; import os import base64 import requests def encode_image(image_path): """ 对图片文件进行 Base64 编码 输入…

微分方程建模

微分方程建模是数学建模的重要方法&#xff0c;因为许多实际问题的数学描述将导致求解微分方程的定解问题。在高教杯数学建模竞赛中每年都会有一道微分方程建模问题&#xff0c;大体上可以按以 下几步&#xff1a; 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数…

【Linux信号】阻塞信号、信号在内核中的表示、信号集操作函数、sigprocmask、sigpending

我们先来了解一下关于信号的一些常见概念&#xff1a; 实际执行 信号的处理动作 称为信号递达。 信号从产生到递达的之间的状态称为信号未决。 进程可以选择阻塞(Block)某个信号。 被阻塞的信号产生时是处于未决状态的&#xff0c;知道进程解除对该信号的阻塞&#xff0c;该…

基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 将FPGA仿真结果导入到matlab显示结果&#xff1a; 测试样本1 测试样本2 测试样本3 2.算法运行软件版本 vivado2019.2 …

鸿蒙HarmonyOS应用开发为何选择ArkTS不是Java?

前言 随着智能设备的快速发展&#xff0c;操作系统的需求也变得越来越多样化。为了满足不同设备的需求&#xff0c;华为推出了鸿蒙HarmonyOS。 与传统的操作系统不同&#xff0c;HarmonyOS采用了一种新的开发语言——ArkTS。 但是&#xff0c;刚推出鸿蒙系统的时候&#xff0…

MySQL数据库课程设计——订餐系统(MySQL数据库+Qt5用户界面+python)

目录 一、系统定义 二、需求分析 三、系统设计 四、详细设计 五、参考文献 一、系统定义 订餐系统是一种基于网络技术的在线点餐平台&#xff0c;旨在为用户提供方便快捷的订餐服务。该系统主要包括用户登录、用户管理、菜单管理、订单管理、支付管理、评价管理等功能模块…

云服务器重置密码后,xshell远程连接不上,重新启用密码登录方式

云服务器重置密码后 &#xff0c;xshell连接出现不能使用密码登录 解决方案&#xff1a;以下来自阿里云重新启用密码登录方式帮助文档 为轻量应用服务器创建密钥且重启服务器使密钥生效后&#xff0c;服务器会自动禁止使用root用户及密码登录。如果您需要重新启用密码登录方式&…

比特币交易繁忙的一天

早晨:市场开盘与准备工作 6:00 AM - 全球市场监测 交易员们早早起床,开始监测全球市场动态,尤其是亚洲市场的动向。通过查看新闻、分析报告和市场数据,了解可能影响比特币价格的因素。 7:00 AM - 团队会议 召开晨会,讨论当天的交易策略。团队分析前一天的交易情况,评…

OpenGL笔记五之VBO与VAO

OpenGL笔记五之VBO与VAO 总结自bilibili赵新政老师的教程 code review! 文章目录 OpenGL笔记五之VBO与VAO1.VBO2.VAO3.VBO与VAO对比 1.VBO 代码 void prepareVBO() {//1 创建一个vbo *******还没有真正分配显存*********GLuint vbo 0;GL_CALL(glGenBuffers(1, &vbo))…

适合创业公司使用的wordpress主题

对于创业公司来说&#xff0c;‌选择一个适合的WordPress主题至关重要&#xff0c;‌它不仅能够提升公司网站的外观和用户体验&#xff0c;‌还能帮助优化搜索引擎排名&#xff0c;‌从而吸引更多的潜在客户。‌以下是一些推荐的WordPress主题&#xff0c;‌特别适合创业公司使…

人工智能算法工程师(中级)课程2-Opencv视觉处理之高级操作与代码详解

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能算法工程师(中级)课程2-Opencv视觉处理之高级操作与代码详解。在上一节课中的OpenCV基础操作我们了解到OpenCV是一个开源的计算机视觉软件库。它提供了各种视觉处理函数&#xff0c;并支持多种编程语言&…

传感器标定(三)激光雷达外参标定(lidar2ins)

一、数据采集 1、LiDAR 传感器的 LiDAR PCD 数据 2、来自 IMU 传感器的姿势文件 3、手动测量传感器之间外部参数初始值并写入的 JSON 文件 二、下载标定工具 //总的git地址&#xff1a; https://github.com/PJLab-ADG/SensorsCalibration git地址&#xff1a; https://githu…

扩散基生物打印:打造多材料组织构建的新篇章

生物打印技术正在经历快速发展&#xff0c;而扩散基生物打印作为一种新兴策略&#xff0c;为制造更复杂和功能化的组织构建物提供了新的可能性。这种方法利用扩散原理&#xff0c;通过在不同区域之间扩散酶、交联剂或可交联聚合物来促进交联&#xff0c;从而实现多种材料的集成…

【论文阅读笔记】ASPS: Augmented Segment Anything Model for Polyp Segmentation

1.论文介绍 ASPS: Augmented Segment Anything Model for Polyp Segmentation ASPS&#xff1a;用于息肉分割的扩展SAM模型 2024年 arxiv Paper Code 2.摘要 息肉分割在结直肠癌诊断中起着至关重要的作用。最近&#xff0c;Segment Anything Model(SAM)的出现利用其在大规模…

软件缺陷简介

缺陷种类 遗漏&#xff0c;指规定或预期的需求为体现在产品种错误&#xff0c;需求是明确的&#xff0c;在实现阶段未将需求的功能正确实现冗余&#xff0c;需求说明文档中未涉及的需求被实现了不满意&#xff0c;用户对产品的实现不满意也成为缺陷 缺陷等级划分 致命&#…

【测试】软件测试报告模板(直接套用)

软件资料清单列表部分文档清单&#xff1a;工作安排任务书&#xff0c;可行性分析报告&#xff0c;立项申请审批表&#xff0c;产品需求规格说明书&#xff0c;需求调研计划&#xff0c;用户需求调查单&#xff0c;用户需求说明书&#xff0c;概要设计说明书&#xff0c;技术解…