【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

​​​​​​​

目录

一、引言 

二、音频分类(audio-classification)

2.1 概述

2.2 技术原理

2.2.1 Wav2vec 2.0模型

 2.2.1 HuBERT模型

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

2.3.2 pipeline对象使用参数 

2.4 pipeline实战

2.4.1 指令识别(默认模型)

 2.4.2 情感识别

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍Audio音频的第一篇,音频分类(audio-classification),在huggingface库内共有2500个音频分类模型。

二、音频分类(audio-classification)

2.1 概述

音频分类,顾名思义就是将音频打标签或分配类别的任务。主要应用场景有语音情绪分类语音命令分类说话人分类音乐风格判别语言判别等。

2.2 技术原理

音频分类,主要思想就是将音频的音谱切分成25ms-60ms的片段,通过CNN等卷积神经网络模型提取特征并进行embedding化,基于transformer与文本类别对齐训练。下面介绍2个代表模型:

2.2.1 Wav2vec 2.0模型

Wav2vec 2.0是 Meta在2020年发表的无监督语音预训练模型。它的核心思想是通过向量量化(Vector Quantization,VQ)构造自建监督训练目标,对输入做大量掩码后利用对比学习损失函数进行训练。模型结构如图,基于卷积网络(Convoluational Neural Network,CNN)的特征提取器将原始音频编码为帧特征序列,通过 VQ 模块把每帧特征转变为离散特征 Q,并作为自监督目标。同时,帧特征序列做掩码操作后进入 Transformer [5] 模型得到上下文表示 C。最后通过对比学习损失函数,拉近掩码位置的上下文表示与对应的离散特征 q 的距离,即正样本对。

 2.2.1 HuBERT模型

HuBERT是Meta在2021年发表的模型,模型结构类似 Wav2vec 2.0,不同的是训练方法。Wav2vec 2.0 是在训练时将语音特征离散化作为自监督目标,而 HuBERT 则通过在 MFCC 特征或 HuBERT 特征上做 K-means 聚类,得到训练目标。HuBERT 模型采用迭代训练的方式,BASE 模型第一次迭代在 MFCC 特征上做聚类,第二次迭代在第一次迭代得到的 HuBERT 模型的中间层特征上做聚类,LARGE 和 XLARGE 模型则用 BASE 模型的第二次迭代模型提取特征做聚类。从原始论文实验结果来看,HuBERT 模型效果要优于 Wav2vec 2.0,特别是下游任务有监督训练数据极少的情况,如 1 小时、10 分钟。

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

  • 模型(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • feature_extractor ( SequenceFeatureExtractor ) — 管道将使用的特征提取器来为模型编码数据。此对象继承自 SequenceFeatureExtractor。
  • modelcardstrModelCard可选) — 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。

    如果未指定框架,则默认为当前安装的框架。如果未指定框架且安装了两个框架,则默认为 的框架model,如果未提供模型,则默认为 PyTorch。

  • 任务str,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • 设备int可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.3.2 pipeline对象使用参数 

  • 输入np.ndarraybytesstrdict) — 输入可以是:
    • str这是音频文件的文件名,将以正确的采样率读取该文件以使用ffmpeg获取波形。这需要在系统上安装ffmpeg 。
    • bytes它应该是音频文件的内容,并以相同的方式由ffmpeg进行解释。
    • np.ndarray形状为(n,)类型为np.float32np.float64)正确采样率的原始音频(不再进行进一步检查)
    • dict形式可用于传递任意采样的原始音频sampling_rate,并让此管道进行重新采样。字典必须采用 或 格式{"sampling_rate": int, "raw": np.array}{"sampling_rate": int, "array": np.array}其中键"raw"或 "array"用于表示原始音频波形。
  • top_kint可选,默认为 None)— 管道将返回的顶部标签数。如果提供的数字等于None或高于模型配置中可用的标签数,则将默认为标签数。

2.4 pipeline实战

2.4.1 指令识别(默认模型)

pipeline对于audio-classification的默认模型时superb/wav2vec2-base-superb-ks,使用pipeline时,如果仅设置task=audio-classification,不设置模型,则下载并使用默认模型。

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline

speech_file = "./output_video_enhanced.mp3"
pipe = pipeline(task="audio-classification")
result = pipe(speech_file)
print(result)

 这是一个上下左右yes及no的指令识别模型,感觉像是训练动物。

[{'score': 0.9988580942153931, 'label': '_unknown_'}, {'score': 0.000909291033167392, 'label': 'down'}, {'score': 9.889943612506613e-05, 'label': 'no'}, {'score': 7.015655864961445e-05, 'label': 'yes'}, {'score': 5.134344974067062e-05, 'label': 'stop'}]

 2.4.2 情感识别

我们指定模型为情感识别模型ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition,具体代码为:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline

speech_file = "./output_video_enhanced.mp3"
pipe = pipeline(task="audio-classification",model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
result = pipe(speech_file)
print(result)

输入为一段mp3格式的语音,输出为

[{'score': 0.13128453493118286, 'label': 'angry'}, {'score': 0.12990005314350128, 'label': 'calm'}, {'score': 0.1262471228837967, 'label': 'happy'}, {'score': 0.12568499147891998, 'label': 'surprised'}, {'score': 0.12327362596988678, 'label': 'disgust'}]

2.5 模型排名

在huggingface上,我们筛选音频分类模型,并按下载量从高到低排序:

三、总结

本文对transformers之pipeline的音频分类(audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行音频分类推理,应用于音频情感识别、音乐曲风判断等业务场景。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)​​​​​​​

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/796012.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

访问 Postman OAuth 2.0 授权的最佳实践

OAuth 2.0 代表了 web 安全协议的发展,便于在多个平台上进行授权服务,同时避免暴露用户凭据。它提供了一种安全的方式,让用户可以授权应用程序访问服务。 在 Postman 中开始使用 OAuth 2.0 Postman 是一个流行的API客户端,支持 …

19 元服务使用心得

Atomic 原子 元数据描述数据的数据 可以理解为鸿蒙版小程序 轻量化 免安装(严格来说需要安装但是较小无感) 独立入口 能够为用户提供一个或者多个便捷的新型应用形态所有文件不超过2M 元服务与应用对比 首包和分包 首包:hap 里面放 首次打开首页和用到的资源 分…

Java常用的API_02(正则表达式、爬虫)

Java正则表达式 七、正则表达式7.1 格式7.1.1 字符类注意字符类示例代码1例2 7.1.2 预定义字符预定义字符示例代码例2 7.1.3 区别总结 7.2 使用Pattern和Matcher类与直接使用String类的matches方法的区别。(1) 使用Pattern和Matcher类示例代码 &#xff…

oslo_i18n学习小结

背景 代码均为开源代码 基于yoga版本,需要对openstack某服务做翻译,了解到oslo_i18n有翻译功能,配置oslo_i18n来给组件进行翻译 用法 用法 每个服务自己会带一个i18n.py的文件,如果要对日志进行翻译,从i18n导入_&…

AI人工智能作词,为音乐注入未来之力

在当今的音乐世界中,创新的力量不断推动着边界的拓展,而人工智能作词正以其独特的魅力,成为引领音乐走向未来的强大动力。 “妙笔生词智能写歌词软件(veve522)”无疑是这股浪潮中的璀璨明星。它利用先进的人工智能技术…

Spring Security学习笔记(一)Spring Security架构原理

前言:本系列博客基于Spring Boot 2.6.x依赖的Spring Security5.6.x版本 Spring Security中文文档:https://springdoc.cn/spring-security/index.html 一、什么是Spring Security Spring Security是一个安全控制相关的java框架,它提供了一套全…

某某会员小程序后端性能优化

背景 某某会员小程序后台提供开放平台能力,为三方油站提供会员积分、优惠劵等api。当用户在油站加油,油站收银会调用我们系统为用户发放积分、优惠劵等。用户反馈慢,三方调用发放积分接口性能极低,耗时30s; 接口情况…

在uniapp中如何使用地图

1&#xff0c;技术选择 最好是使用webview html形式加载&#xff0c;避免打包app时的地图加载问题 2&#xff0c;webview使用 使用webview必须按照官方文档,官网地址&#xff1a;https://uniapp.dcloud.net.cn/component/web-view.html <template><view><!…

LabVIEW比例压力控制阀自动测试系统

开发了一套基于LabVIEW编程和PLC控制的比例控制阀自动测试系统。该系统能够实现共轨管稳定的超高压供给&#xff0c;自动完成比例压力控制阀的耐久测试、流量滞环测试及压力-流量测试。该系统操作简便&#xff0c;具有高精度和高可靠性&#xff0c;完全满足企业对自动化测试的需…

80. UE5 RPG 实现UI显示技能冷却进度功能

在上一篇文章里&#xff0c;我们实现了通过GE给技能增加资源消耗和技能冷却功能。UI也能够显示角色能够使用的技能的UI&#xff0c;现在还有一个问题&#xff0c;我们希望在技能释放进去冷却时&#xff0c;技能变成灰色&#xff0c;并在技能冷却完成&#xff0c;技能可以再次使…

Linux安全技术与防火墙

一、安全技术和防火墙 1.1 安全技术 入侵检测系统&#xff1a;特点是不阻断网络访问&#xff0c;主要是提供报警和时候报警&#xff0c;不主动介入。 入侵防御系统&#xff1a;透明模式工作&#xff0c;对数据包、网络监控、服务攻击、木马蠕虫、系统漏洞等等进行准确的分析和…

两个视频怎么剪辑成一个视频?3个方法分享

两个视频怎么剪辑成一个视频&#xff1f;将两个视频剪辑成一个视频&#xff0c;是现代数字内容创作中的高频需求&#xff0c;它不仅简化了素材管理&#xff0c;还能通过创意剪辑提升作品连贯性与表现力。通过精心编排&#xff0c;两个视频片段可以无缝融合&#xff0c;讲述更完…

如何通过兔子和窝窝的故事理解“在机器人学习和研究中的获得成本与维护成本”(节选)

获得成本 掌握一门课程&#xff0c;以最为简单的学校成绩过60为例&#xff0c;需要按要求提交材料&#xff0c;包括作业、报告、实验和考试等&#xff0c;依据学分和考核要求的不同&#xff0c;需要对于花费时间和经历进行完成。 维护成本 考完了&#xff0c;如果被动学习那…

Django 删除单行数据

1&#xff0c;添加模型 from django.db import modelsclass Post(models.Model):title models.CharField(max_length200)content models.TextField()pub_date models.DateTimeField(date published)class Book(models.Model):title models.CharField(max_length100)author…

FastAPI 学习之路(四十七)WebSockets(三)登录后才可以聊天

之前我们是通过前端自动生成的token信息&#xff0c;这次我们通过注册登录&#xff0c;保存到本地去实现。首先&#xff0c;我们实现一个登录页面&#xff0c;放在templates目录下。 <!DOCTYPE html> <html lang"en"> <head><meta charset&quo…

基于PCIe总线架构的2路1GSPS AD、4路1GSPS DA信号处理平台(100%国产化)

板卡概述 PCIE723-165是基于PCIE总线架构的2通道1GSPS采样率14位分辨率、4通道1GSPS采样率16位分辨率信号处理平台&#xff0c;该板卡采用国产16nm FPGA作为实时处理器&#xff0c;支持2路高速采集以及4路高速数据回放&#xff0c;板载2组DDR4 SDRAM大容量数据缓存&#xff0c;…

gradle 和 java 版本对应关系

文章目录 gradle 和 java 版本对应关系原地址 gradle 和 java 版本对应关系 原地址 https://docs.gradle.org/current/userguide/compatibility.html#compatibility

Python进阶 2024/7/10

文件编码概念 文件的读取操作 打开文件 open&#xff08;&#xff09;打开函数 open&#xff08;name&#xff0c;mode,encoding&#xff09; name:打开的目标文件的字符串&#xff0c;可以包含文件所在的具体路径 mode&#xff1a;访问模式&#xff0c;只读&#xff0c;只…

MySQL修改表名:重命名RENAME

RENAME命令 RENAME命令用于修改表的名称&#xff0c;命令格式&#xff1a;rename table 原表名 to 新表名; 例如&#xff1a;将user表改成user_info rename table user to user_info;使用场景 第一个场景重命名 最常用的场景就是使用rename修改表名。 rename table user t…

js页面跳转

最近&#xff0c;自己学习前端时发现有趣的js跳转页面&#xff0c;下面和大家分享小知识。 网上有许多跳转方法&#xff0c;我只选择了一种。如下代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8">…