【数据结构】初探数据结构面纱:栈和队列全面剖析

【数据结构】初探数据结构面纱:栈和队列全面剖析

🔥个人主页大白的编程日记

🔥专栏数据结构


文章目录

  • 【数据结构】初探数据结构面纱:栈和队列全面剖析
    • 前言
    • 一.栈
      • 1.1栈的概念及结构
      • 1.2栈的结构选择
      • 1.3栈的实现
      • 1.4栈OJ
    • 二. 队列
      • 2.1队列的概念及结构
      • 2.2队列的应用
      • 2.3队列的选择
      • 2.4队列的实现
      • 2.5队列OJ
    • 后言

前言

哈喽,各位小伙伴大家好!今天咱们就正式开始学习数据结构了。我们今天要学习的数据结构分别是栈和队列。话不多说,咱们进入正题!向大厂冲锋!

一.栈

1.1栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。

栈是一种遵循后进先出的结构。类似生活中我们生活中的弹夹,羽毛球桶等等。

在这里插入图片描述

  • 入栈
    入栈就是往栈顶增添数据

  • 出栈
    出栈就是在栈顶删除元素

1.2栈的结构选择

  • 数组

我们可以用数组实现栈用下标控制栈顶元素的入栈和出栈

  • 单链表
    单链表其实不好实现栈,因为出栈时会修改上一个节点的指针。但单链表无法找到上一个节点。

    所以我们把栈顶放在左边,栈顶是头节点,这样入栈出栈都可以。不需要修改上一个节点。
  • 双向链表
    为了解决单链表找上一个节点的问题,我们可以用双向链表来解决。

那这三个我们改选择那里一个呢?
首先我们可以先排除双向链表,因为它单链表还多了一个指针,多浪费了空间而且还要多维护一个指针。那单链表和数组我们选哪一个呢?其实都差不多。顺序表有扩容的问题。但是顺序表的缓存利用率高(文章有解释)。所以我们就选择数组吧。

1.3栈的实现

  • 栈的定义
    我们先定义一个栈结构体,里面放有栈数组的指针。top是栈顶元素的下标。capacity则是栈数组现在的空间大小。
typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;
  • 栈的初始化
    我们先断言一下。然后把空间大小和top都初始化为0。
    top的初始化有两种方式
void STInit(ST* pst)
{
	assert(pst);
	pst->a = NULL;
	pst->capacity = pst->top = 0;//指向栈顶元素的下一个
}

一种是初始化为-1,代表top指向栈顶元素。为什么要给-1呢?
因为如果给0的话,当栈为空时,0既能表示栈为空也能代表栈有一个元素,下标为0。所以初始化要给-1。
第二种就是初始化给0,代表top指向栈顶元素的下一个位置。

  • 栈的销毁

栈的销毁我们先free销毁数组,然后再给数组指针给空。
top和capacity都给0表示栈为空。

void STDestroy(ST* pst)
{
	assert(pst);
	free(pst->a);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}
  • 入栈
    入栈我们需要先对栈判满,如果满了我们就扩容到原来的2倍。
    如果没开空间就先开4个空间。当我们没开空间时,a是空指针,此时realloc相当与malloc。然后再更新a和capacity。赋值x,top++。
void STPush(ST* pst, STDataType x)
{
	assert(pst);
	if (pst->capacity == pst->top)//栈满了
	{
		int newcapacity = pst->capacity == 0 ? 4 : 2 * pst->capacity;//未开空间就给4个空间,否则就在原来的空间扩容两倍
		STDataType* tmp = (STDataType*)realloc(pst->a,sizeof(STDataType)*newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail~");
			return;
		}
		pst->a = tmp;
		pst->capacity = newcapacity;
	}
	pst->a[pst->top++] = x;//赋值 top++
}
  • 出栈

出栈我们只需要控制top,让top–即可。

void STPop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);
	pst->top--;
}
  • 获取栈顶元素

因为我们top是指向栈顶元素的下一个,所以我们返回下标为top-1的元素

STDataType STTop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);
	return pst->a[pst->top-1];
}
  • 判空

top等于0时就是空。

bool STEmpty(ST* pst)
{
	assert(pst);
	return 0 == pst->top;
}
  • 栈的元素个数
    因为我们的top指向栈顶元素的下一个,就相当于栈的元素个数size。
    我们直接返回top即可。
int STSize(ST* pst)
{
	assert(pst);
	return pst->top;
}
  • 栈的遍历
    栈在遍历的时候先获取栈顶元素,然后在出栈。直到栈为空。
int main()
{
	ST s;
	STInit(&s);
	STPush(&s, 1);
	STPush(&s, 2);
	STPush(&s, 3);
	STPush(&s, 4);
	while (!STEmpty(&s))
	{
		printf("%d ", STTop(&s));
		STPop(&s);
	}
	STDestroy(&s);
	return 0;
}


注意栈有可能边入边出,这时的输出结果顺序就不是与与输入顺序相反了

int main()
{
	ST s;
	STInit(&s);
	STPush(&s, 1);
	STPush(&s, 2);
	printf("%d ", STTop(&s));
	STPop(&s);
	STPush(&s, 3);
	STPush(&s, 4);
	while (!STEmpty(&s))
	{
		printf("%d ", STTop(&s));
		STPop(&s);
	}
	STDestroy(&s);
	return 0;
}

1.4栈OJ

-题目
有效的括号

  • 思路分析
    让左括号入栈,右括号与左括号匹配。

  • 代码实现

typedef char STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;
void STInit(ST* pst)
{
	assert(pst);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}
void STDestroy(ST* pst)
{
	assert(pst);
	free(pst->a);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}
void STPush(ST* pst, STDataType x)
{
	assert(pst);
	if (pst->capacity == pst->top)
	{
        int newcapacity = pst->capacity == 0 ? 4 : 2 * pst->capacity;
		STDataType* tmp = (STDataType*)realloc(pst->a,sizeof(STDataType)*newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail~");
			return;
		}
		pst->a = tmp;
		pst->capacity = newcapacity;
	}
	pst->a[pst->top++] = x;
}
void STPop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);
	pst->top--;
}
STDataType STTop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);
	return pst->a[pst->top-1];
}
bool STEmpty(ST* pst)
{
	assert(pst);
	return 0 == pst->top;
}
int STSize(ST* pst)
{
	assert(pst);
	return pst->top;
}
bool isValid(char* s) 
{
    ST t;
    STInit(&t);
    while(*s)
    {
        if(*s=='('||*s=='['||*s=='{')
        {
            STPush(&t,*s);//左括号入栈
        }
        else
        {
            if(STEmpty(&t))//没有左括号匹配
            {
                return false;
            }
           char tmp=STTop(&t);//获取栈顶元素匹配
           STPop(&t);
           if(*s==')'&&tmp!='('
           ||*s=='}'&&tmp!='{'
           ||*s==']'&&tmp!='[')//匹配
           {
             return false;
           }
        }
        s++;
    }
    bool ret=STEmpty(&t);//判空
    STDestroy(&t);
    return ret;

}

二. 队列

2.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(First In First Out)
入队列:进行插入操作的一端称为队尾
出队列:进行删除操作的一端称为队头


与栈相反,队列遵循先进先出的原则。只能在队尾入数据,队头出数据。

2.2队列的应用

  • 抽号机
    我们平时在日常生活中都会遇到取票排队。取票后我们就把票数尾插到抽号机里,要取票时我们就在队头出数据。这样就能保证先取票的先出号。
  • 好友推荐
    队列还可以做好友推荐。也就是广度优先遍历(DFS)。

2.3队列的选择

  • 顺序表
    顺序表不好实现队列。因为队列是队头出数据,顺序表头删需要挪动数据。

  • 双向链表
    双向链表其实实现啥都好。但是双向链表多开一个指针,浪费内存。还要多维护一个指针。

  • 单链表
    单链表实现队列非常合适。因为队列在队尾入数据,队头出数据。单链表头删和尾删都不需要上一个节点。

所以我们用单链表实现。

2.4队列的实现

  • 队列结构体
    我们先定义一个队列节点的结构体,然后在用一个头指针,一个尾指针,和一个size维护整个队列。
typedef struct QueueNode
{
	struct QueueNode* next;
	QDataType val;
}QNode;
typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;
  • 队列的初始化
    我们把头指针和尾指针都初始化为空,size初始化为0.
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}
  • 队列的销毁

我们创建一个cur指针指向头节点,然后遍历销毁即可。注意要先保存下一个节点在销毁当前节点,然后移动cur即可。最后让头指针尾指针指向空。size为0即可。

void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	};
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}
  • 队列的插入
    我们malloc一个节点。因为是尾插,所以让节点指向空。赋值为x。如果没有节点,那头节点和尾节点都是指向新节点。否则尾插在尾节点后。新节点成为新的尾节点。最后size++。
void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* node = (QNode*)malloc(sizeof(QNode));
	if (node == NULL)
	{
		perror("malloc fail");
		return;
	}
	node->next = NULL;
	node->val = x;
	if (pq->phead == NULL)//没有节点
	{
		pq->phead = pq->ptail = node;
	}
	else//至少有一个节点
	{
		pq->ptail->next = node;
		pq->ptail = node;
	}
	pq->size++;
}

-获取队头元素

我们先断言一下判断队列是否为空,然后返回队头节点元素的值。

QDataType QueueFron(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	return pq->phead->val;
}
  • 获取队尾元素
    我们先断言一下判断队列是否为空,然后返回队尾节点元素的值。
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	return pq->ptail->val;
}
  • 队头的删除
    我们先断言一下判断队列是否为空,然后分两种情况
    第一种情况,当队列只有一个节点时。
    队头指针和队尾指针都指向空,size–。
    第二种情况,当队列不是一个节点时。
    保存队头节点的下一个节点,释放头节点,保存的节点成为新的头节点。size–。
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	if (pq->phead == pq->ptail)//只有一个节点
	{
		free(pq->phead);
		pq->phead = pq->ptail = NULL;
		pq->size--;
	}
	else
	{
		QNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
		pq->size--;
	}
}

  • 队列的判空

判断size是否为0即可

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->size == 0;
}
  • 队列的元素个数

因为我们前面用size记录了个数,直接返回size即可。
防止遍历找.实现O(1).

int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}
  • 队列的遍历

队列的遍历就是获取队头元素,然后删除队头元素直到队列为空。

int main()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	QueuePush(&q, 4);
	while (q.size)
	{
		printf("%d ", QueueFron(&q));
		QueuePop(&q);
	}
	QueueDestroy(&q);
	return 0;
}

注意不论是否边入边出。队列输出的顺序都与入队列顺序一致。

int main()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	printf("%d ", QueueFron(&q));
	QueuePop(&q);
	printf("%d ", QueueFron(&q));
	QueuePop(&q);
	QueuePush(&q, 3);
	QueuePush(&q, 4);
	while (q.size)
	{
		printf("%d ", QueueFron(&q));
		QueuePop(&q);
	}
	QueueDestroy(&q);
	return 0;
}

2.5队列OJ

  • 题目
    用队列实现栈

  • 思路分析
    我们保持一个队列有数据,一个队列没数据。
    出栈时,往空队列导入数据即可拿到栈顶元素。

  • 代码实现

typedef int QDataType;
typedef struct QueueNode
{
	struct QueueNode* next;
	QDataType val;
}QNode;
typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}
void QueueDestroy(Queue* pq)
{
	assert(pq);
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);
		cur = next;
	};
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}
void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QNode* node = (QNode*)malloc(sizeof(QNode));
	if (node == NULL)
	{
		perror("malloc fail");
		return;
	}
	node->next = NULL;
	node->val = x;
	if (pq->phead == NULL)
	{
		pq->phead = pq->ptail = node;
	}
	else
	{
		pq->ptail->next = node;
		pq->ptail = node;
	}
	pq->size++;
}
QDataType QueueFron(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	return pq->phead->val;
}
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	return pq->ptail->val;
}
bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->size == 0;
}
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);
	if (pq->phead == pq->ptail)
	{
		free(pq->phead);
		pq->phead = pq->ptail = NULL;
		pq->size--;
	}
	else
	{
		QNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
		pq->size--;
	}
}
//统计个数
int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}
typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() {
    MyStack* q=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&(q ->q1));
    QueueInit(&(q->q2));
    return q;
}
void myStackPush(MyStack* obj, int x) {
    if(!QueueEmpty(&obj->q1))//往不为空的队列入数据
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}
int myStackPop(MyStack* obj) {
    Queue* empty=&obj->q1;
    Queue* noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        noempty=&obj->q1;
        empty=&obj->q2;
    }//假设法
    while(QueueSize(noempty)>1)//数据入队列直到剩下一个数据
    {
        QueuePush(empty,QueueFron(noempty));
        QueuePop(noempty);
    }
    int top=QueueFron(noempty);
    QueuePop(noempty);
    return top;
}
int myStackTop(MyStack* obj) {
    if(!QueueEmpty(&obj->q1))//返回不为空的队尾元素
    {
        return QueueBack(&obj->q1);
    }
    else
    {
        return QueueBack(&obj->q2);
    }
}
bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q1) && QueueEmpty(&obj->q2);//判断两个队列是否为空
}
void myStackFree(MyStack* obj) {
    QueueDestroy(&obj->q1);//销毁队列1
    QueueDestroy(&obj->q2);//销毁队列2
    free(obj);//销毁结构体
    obj=NULL;
}

后言

这就是栈和队列的内容。栈和队列都是很重要的数据结构。大家一定要多加掌握和熟练。今天就分享到这里。感谢大家的耐心垂阅,咱们下期见!拜拜~
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/793817.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构(3.9_1)——特殊矩阵的压缩存储

总览 一维数组的存储结构 如果下标从1开始,则a[i]的存放地址LOC (i-1)*sizeof(ElemType); 二维数组的存储 二维数组也具有随机存储的特性 设起始地址为LOC 在M行N列的二维数组b[M][N]中,若按行优先存储, 则b[i][j]的存储地址的LOC (i*…

【JVM】对象的生命周期一 | 对象的创建与存储

Java | 对象的生命周期1-对象的创建与存储 文章目录 前言对象的创建过程内存空间的分配方式方式1 | 指针碰撞方式2 | 空闲列表 线程安全问题 | 避免空间冲突的方式方式1 | 同步处理(加锁)方式2 | 本地线程分配缓存 对象的内存布局Part1 | 对象头Mark Word类型指针 P…

文献翻译与阅读《Integration Approaches for Heterogeneous Big Data: A Survey》

CYBERNETICS AND INFORMATION TECHNOLOGIES’24 论文原文下载地址:原文下载 目录 1 引言 2 大数据概述 3 大数据的异构性 4 讨论整合方法 4.1 大数据仓库(BDW) 4.2 大数据联盟(BDF) 5 DW 和 DF 方法的比较、分…

智充科技营收增速放缓:经营成本飙升,应收账款大幅增长

《港湾商业观察》黄懿 6月10日, XCHG Limited 智能充电有限公司(下称:智充科技)在美国证监会(SEC)更新招股书,拟在美国纳斯达克上市,其股票代码为“XCH”。北京智充科技有限公司为其国内运营主体(下称“北京智充科技”…

IC后端设计中的shrink系数设置方法

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 在一些成熟的工艺节点通过shrink的方式(光照过程中缩小特征尺寸比例)得到了半节点,比如40nm从45nm shrink得到,28nm从32nm shrink得到,由于半节点的性能更优异,成本又低,漏电等不利因素也可以…

C++学习

一、注释 /*多行 。。。 。。。 注释*/ //单行注释 #include <iostream> using namespace std; int main() {cout << "hellow" << endl;system("pause");return 0; }二、变量定义 #include <iostream> using namespace std; int…

YOLOv8改进 | 注意力机制| 利用并行子网络构建深度较浅但性能卓越的网络【全网独家】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 专栏目录 &#xff1a;《YOLOv8改进有效…

[PM]原型与交互设计

原型分类 1.草图原型 手绘图稿, 规划的早期,整理思路会使用 2.低保真原型 简单交互, 无需配色, 黑白灰为主, 产品规划和评审阶段使用 标准化的低保真原型是高保真原型的基础 3.高保真原型 复杂交互, 一般用于公开演示, 产品先产出低保真原型, 设计师根据原型产出设计稿 低保…

【ARM】CCI缓存一致性整理

目录 1.CCI500提供的功能 2.CCI500在SOC系统中所处的位置​编辑 3.CCI500内部结构​编辑 4.功能描述 1.CCI500提供的功能 2.CCI500在SOC系统中所处的位置 3.CCI500内部结构 Transaction Tracker&#xff08;TT&#xff09;是用来解决一致性和ordering问题的&#xff0c;它…

【驱动篇】龙芯LS2K0300之spi设备驱动

实验介绍 GC9A01是一款小巧&#xff08;1.28寸&#xff09;、彩色&#xff08;分辨率为 240 * 240 RGB&#xff09;圆形TFT屏幕&#xff0c;它采用4线 SPI的控制方式&#xff0c;电源供电电压为3.3V&#xff0c;有7个控制引脚&#xff1b;本次实验将使用它来验证龙芯SOC的SPI通…

css实现图片渐变切换效果

一、效果 使用csskeyframes&#xff0c;实现5个图片渐变切换的效果。如下图&#xff1a; 二、代码 1.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"w…

头歌资源库(27)特别的数

一、 问题描述 编程输出一个特别的数&#xff0c;该数是一个由1~9组成的9位数&#xff0c;每个数字只能出现一次&#xff0c;且这个9位数由高位到低位前i位能被i整除。 二、算法思想 创建一个长度为9的数组&#xff0c;用于存放1~9这9个数字。使用回溯算法&#xff0c;从第…

(WRF-UCM)高精度城市化气象动力模拟技术

气候变化及应对是政府、科学界及商业界关注的焦点。气候是多个领域&#xff08;生态、水资源、风资源及碳中和等问题&#xff09;的主要驱动因素&#xff0c;合理认知气候变化有利于解释生态环境变化机理及过程&#xff0c;而了解现在、未来气候变化则是进行生态、环境及能源评…

IDEA中配置代理,解决Codearts Snap登陆不了的问题

问题描述&#xff1a;在mac电脑中的idea中安装了华为的codearts snap插件&#xff0c;一直登录不了&#xff0c;账号是没问题的&#xff0c;后来我怀疑是我的代理有问题&#xff0c;找到IDEA中的代理设置先是有这个问题“You have JVM property "https.proxyHost" se…

C++基础(一)

目录 1.不同版本的hello word&#xff01; 2.namespace和&#xff1a;&#xff1a;域作用限定符以及using 2.1 namespace 2.2&#xff1a;&#xff1a; 2.3using用于展开域 3.C输入和输出 4.缺省参数 5.重载 6.引用 6.1引用介绍 6.2 引用的特性 注意&#xff1a; 6.4 c…

C#绘制阻抗圆图初步

阻抗圆图&#xff0c;或者叫史密斯图&#xff0c;是无线电设计方面用的&#xff1b; 基本的阻抗圆图如下&#xff0c; 下面尝试用C#能不能画一下&#xff1b; 先在网上找一个画坐标的C#类&#xff0c;它的效果如下&#xff1b; 自己再增加一个函数&#xff0c;可以绘制中心在…

Redis的安装配置及IDEA中使用

目录 一、安装redis&#xff0c;配置redis.conf 1.安装gcc 2.将redis的压缩包放到指定位置解压 [如下面放在 /opt 目录下] 3.编译安装 4.配置redis.conf文件 5.开机自启 二、解决虚拟机本地可以连接redis但是主机不能连接redis 1.虚拟机网络适配器网络连接设置为桥接模式…

《昇思25天学习打卡营第16天|基于MindNLP+MusicGen生成自己的个性化音乐》

MindNLP 原理 MindNLP 是一个自然语言处理&#xff08;NLP&#xff09;框架&#xff0c;用于处理和分析文本数据。 文本预处理&#xff1a;包括去除噪声、分词、词性标注、命名实体识别等步骤&#xff0c;使文本数据格式化并准备好进行进一步分析。 特征提取&#xff1a;将文…

【嵌入式Linux】<知识点> GDB调试(更新中)

文章目录 前言 一、GDB调试预备工作 二、GDB的启动与退出 三、GDB中查看源代码 四、GDB断点操作 五、GDB调试指令 前言 在专栏【嵌入式Linux】应用开发篇_Linux打工仔的博客中&#xff0c;我们已经写了大量的源程序。但是在调试这些程序时我们都是通过printf大法和肉眼除…

异业联盟整合各大行业门店,共享资源

异业联盟系统是一种将不同行业的企业或商家整合在一起&#xff0c;通过资源共享、优势互补、合作推广等方式&#xff0c;实现共同发展和互利共赢的商业合作模式的数字化管理和运营系统。 其具有以下显著优势&#xff1a; 1.拓展客户群体&#xff1a;不同行业的企业联合起来&am…