2023年高教杯数学建模2023B题解析(仅从代码角度出发)

前言

最近博主正在和队友准备九月的数学建模,在做往年的题目,博主主要是负责数据处理,运算以及可视化,这里分享一下自己部分的工作,相关题目以及下面所涉及的代码后续我会作为资源上传

问题求解

第一题

第一题的思路主要如下:
在这里插入图片描述
在这里插入图片描述
如果我们基于代码实现的话,代码应该是这样的:

# 导入相关第三方包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 生成测线距离中心点处的距离
list1=[]
d=200

for i in range(-800,1000,200):
    list1.append(i)
df=pd.DataFrame(list1,columns=["测线距离中心点处的距离"])

#计算海水深度和覆盖宽度
degree1 = 1.5 
radian1 = degree1 * (math.pi / 180)
df["海水深度"]=(70-df["测线距离中心点处的距离"]*math.tan(radian1))
df["海水深度"]=df["海水深度"].round(2)
degrees2 = 120/2
radian2 = degrees2 * (math.pi / 180)
df["覆盖宽度"]=(df["海水深度"]*math.sin(radian2)/math.cos(radian2+radian1))+(df["海水深度"]*math.sin(radian2)/math.cos(radian2-radian1))
df["覆盖宽度"]=df["覆盖宽度"].round(2)

# 计算重叠率
leftlist=df["海水深度"]*math.sin(radian2)*1/math.cos(radian1+radian2)
rightlist=df["海水深度"]*math.sin(radian2)*1/math.cos(radian1-radian2)
leftlist=leftlist.round(2)
rightlist=rightlist.round(2)
leftlist=leftlist.tolist()
leftlist=leftlist[1:]
rightlist=rightlist.tolist()
rightlist=rightlist[:8]
heights = df["覆盖宽度"].tolist()
heights=heights[:8]
list2=[0]
for i in range(0,8):
    a=(1-200/((leftlist[i]+rightlist[i])*math.cos(radian1)))
    list2.append(a*100)

df["重叠率"]=list2
df.to_excel("2023B题1.xlsx",index=False)

这样我们就基本上完成了对相关数据的求解,然后我们可以实现一下对于它的可视化,代码与相关结果如下:

plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题


# Plotting sea depth
plt.figure(figsize=(10, 6))
plt.plot(df["测线距离中心点处的距离"], df["海水深度"], marker='o', linestyle='-', color='b', label='海水深度')

# Plotting coverage width
plt.plot(df["测线距离中心点处的距离"], df["覆盖宽度"], marker='o', linestyle='-', color='g', label='覆盖宽度')

# Plotting overlap rate
plt.plot(df["测线距离中心点处的距离"], df["重叠率"], marker='o', linestyle='-', color='r', label='重叠率')

# Adding labels and title
plt.xlabel('测线距离中心点处的距离')
plt.ylabel('海水深度 / 覆盖宽度 / 重叠率')
plt.title('海水深度、覆盖宽度和重叠率随距离变化的折线图')
plt.legend()

# Display plot
plt.grid(True)
plt.tight_layout()
plt.show()

在这里插入图片描述

第二题

第二题的思路主要是下面的式子:
在这里插入图片描述
博主的求解代码基本如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 生成相关数据
list1=[]
list2=[]
a=0
for i in range(8):
    ans=a*math.pi/180
    list1.append(ans)
    a+=45
a=0
for i in range(8):
    list2.append(a)
    a+=0.3
b=1.5
c=60
randian11=b*math.pi/180
randian12=c*math.pi/180

# 求解覆盖宽度:
list3=[]
for i in range(8):
    list4=[]
    for j in range(8):
        randian21=math.tan(randian11)*-1*math.cos(list1[i])
        randian31=math.tan(randian11)*math.sin(list1[i])
        randian22=math.atan(randian21)
        randian32=math.atan(randian31)
        Da=120-list2[j]*randian21*1852
        W=(Da*math.sin(randian12)/math.cos(randian12+randian32))+(Da*math.sin(randian12)/math.cos(randian12-randian32))
        list4.append(W)
    list3.append(list4)

最后我们的工作就是数据的可视化了,首先是我们的代码部分:

#对结果的可视化
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
df=pd.DataFrame()
df["β=0°"]=list3[0]
df["β=45°"]=list3[1]
df["β=90°"]=list3[2]
df["β=135°"]=list3[3]
df["测量船距海域中心点的距离"]=list2
plt.figure(figsize=(10, 6))
plt.plot(df["测量船距海域中心点的距离"], df["β=0°"], label="β=0°")
plt.scatter(df["测量船距海域中心点的距离"], df["β=0°"]) 
plt.plot(df["测量船距海域中心点的距离"], df["β=45°"], label="β=45°")
plt.scatter(df["测量船距海域中心点的距离"], df["β=45°"])  
plt.plot(df["测量船距海域中心点的距离"], df["β=90°"], label="β=90°")
plt.scatter(df["测量船距海域中心点的距离"], df["β=90°"]) 
plt.plot(df["测量船距海域中心点的距离"], df["β=135°"], label="β=135°")
plt.scatter(df["测量船距海域中心点的距离"], df["β=135°"]) 
plt.xlabel('测量船距海域中心点的距离')
plt.ylabel('list3 values')
plt.legend()
plt.grid(True)
plt.show()
        

在这里插入图片描述

第三题

前言

这题与上面的题目仅仅需要我们求解不同,这题的工作主要分为两份:

  1. 求解
  2. 灵敏度分析

求解

这题求解的主要思路如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(PS:浅浅吐槽一下,公式真的多,理顺花了我好一会…)
博主的求解代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 设置相关参数
a=1.5
b=60
radian1=a*math.pi/180
radian2=b* math.pi/180
D0=110
Les=4*1852 #待测海域东西宽度
D=D0+Les/2*math.tan(radian1) #此处Dmax
x=D*math.tan(radian2)
D=D-x*math.tan(radian1)
W1=0
W2=0
res_list=[x]  # 存储x
left_list=[]  # 存储左线坐标
right_list=[] # 存储右线坐标

while x+W2*math.cos(radian1)<=Les:
    W2=D*math.sin(radian2)/math.cos(radian2-radian1)
    W1=D*math.sin(radian2)/math.cos(radian2+radian1)
    d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
    left_list.append(x-W1*math.cos(radian1))
    right_list.append(x+W2*math.cos(radian1))
    D=D-d*math.tan(radian1)
    x=x+d
    res_list.append(x)

W2=D*math.sin(radian2)/math.cos(radian2-radian1)
W1=D*math.sin(radian2)/math.cos(radian2+radian1)
d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
left_list.append(x-W1*math.cos(radian1))
right_list.append(x+W2*math.cos(radian1))

print("总条数:%d"%(len(res_list)))  #总条数
print("最大长度:%f"%(res_list[-1]))  #最大长度
for i in range(len(res_list)):
    res_list[i]=res_list[i]/1852   
    left_list[i]=left_list[i]/1852
    right_list[i]=right_list[i]/1852

然后就是我们对相关结果的可视化:

# 可视化
plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
plt.axvline(res_list[0], color='red',label='Red Line (测线)')
plt.axvline(left_list[0], color='green',label='Green Line (条线左侧)')
plt.axvline(right_list[0], color='blue',label='Blue Line (条线右侧)')

for i in range(1, len(res_list)):
    plt.axvline(res_list[i], color='red')
    plt.axvline(left_list[i], color='green')
    plt.axvline(right_list[i], color='blue')

# 设置图形属性
plt.title('问题三结果')
plt.ylabel('由南向北/海里')
plt.legend()

# 显示图形
plt.grid(True)
plt.show()

在这里插入图片描述

灵敏度分析

灵敏度的分析思路其实还是很简单,主要是我们要改变开角和坡角的大小来看一下
看一下对结果的影响:

  • 基于开角变化实现的灵敏度分析及其可视化
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 设置相关参数

for b in range(100,150,10):
    a=1.5
    radian1=a*math.pi/180
    radian2=b/2* math.pi/180
    D0=110
    Les=4*1852 #待测海域东西宽度
    D=D0+Les/2*math.tan(radian1) #此处Dmax
    x=D*math.tan(radian2)
    D=D-x*math.tan(radian1)
    W1=0
    W2=0
    res_list=[x]
    left_list=[]
    right_list=[]

    while x+W2*math.cos(radian1)<=Les:
        W2=D*math.sin(radian2)/math.cos(radian2-radian1)
        W1=D*math.sin(radian2)/math.cos(radian2+radian1)
        d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
        left_list.append(x-W1*math.cos(radian1))
        right_list.append(x+W2*math.cos(radian1))
        D=D-d*math.tan(radian1)
        x=x+d
        res_list.append(x)

    W2=D*math.sin(radian2)/math.cos(radian2-radian1)
    W1=D*math.sin(radian2)/math.cos(radian2+radian1)
    d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
    plt.plot(range(len(res_list)), res_list, linestyle='-', label=f'开角为{b}°')

plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
# 设置标签和标题
plt.xlabel('i')
plt.ylabel('res_list[i]')
plt.title('基于开角变化实现的灵敏度分析及其可视化')

# 添加网格线和图例(可选)
plt.grid(True)
plt.legend()

# 显示图形
plt.show()
    

结果如下:
在这里插入图片描述

  • 基于开角变化实现的灵敏度分析及其可视化:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 设置相关参数
a_list=[1.3,1.4,1.5]
for i in range(len(a_list)):
    a=a_list[i]
    b=120
    radian1=a*math.pi/180
    radian2=b/2* math.pi/180
    D0=110
    Les=4*1852 #待测海域东西宽度
    D=D0+Les/2*math.tan(radian1) #此处Dmax
    x=D*math.tan(radian2)
    D=D-x*math.tan(radian1)
    W1=0
    W2=0
    res_list=[x]
    left_list=[]
    right_list=[]

    while x+W2*math.cos(radian1)<=Les:
        W2=D*math.sin(radian2)/math.cos(radian2-radian1)
        W1=D*math.sin(radian2)/math.cos(radian2+radian1)
        d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
        left_list.append(x-W1*math.cos(radian1))
        right_list.append(x+W2*math.cos(radian1))
        D=D-d*math.tan(radian1)
        x=x+d
        res_list.append(x)

    W2=D*math.sin(radian2)/math.cos(radian2-radian1)
    W1=D*math.sin(radian2)/math.cos(radian2+radian1)
    d=(W1+W2)*0.9*math.cos(radian1)/(1+math.sin(radian1)*math.sin(radian2)/math.cos(radian2+radian1)*0.9)
    plt.plot(range(len(res_list)), res_list, linestyle='-', label=f'坡角为{a}°')

plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题
# 设置标签和标题
plt.xlabel('i')
plt.ylabel('res_list[i]')
plt.title('基于坡角变化实现的灵敏度分析及其可视化')

# 添加网格线和图例(可选)
plt.grid(True)
plt.legend()

# 显示图形
plt.show()

在这里插入图片描述

第四题

这题的主要工作就不是我做了,我主要是负责海水深度与横纵坐标数据的可视化,代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math

# 导入相关数据
filepath="../resource/data.xlsx"
df=pd.read_excel(filepath)

# 数据预处理
df = df.iloc[1:, 2:]
list1=df.values.tolist()

list2=[]
for i in range(251):
    list3=[]
    for j in range(201):
        list3.append(list1[i][j]*-1)
    list2.append(list3)
list4 = np.arange(0,4.02,0.02) 
list3 = np.arange(0, 5.02, 0.02)

# 数据可视化

plt.rcParams['font.sans-serif'] = ['SimHei']  # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题

x, y = np.meshgrid(list4, list3)
z = np.array(list2)

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

surf = ax.plot_surface(x, y, z, cmap='viridis')

ax.set_xlabel('横向坐标(由西向东)/海里')
ax.set_ylabel('纵向坐标(由南向北)/海里')

ax.view_init(elev=30, azim=-45) 

fig.colorbar(surf, aspect=5) 

# 显示图形
plt.show()

三维图如下:
在这里插入图片描述

结语

以上就是我所做的所有相关工作了,从这个学期有人找我打一下这个比赛,在此之前我从来都没有写过多少python,前一段时间打数维杯才开始看,没几天就上战场了,所幸最后也水了一个一等奖(感谢我的队友们),之前我的好几个学弟也问过怎么学语言之类,我还是觉得除了我们的第一门语言外,其他的就不要找几十小时的视频看了,你看我没看不也是硬逼出来了吗,事情往往不会在你有充分准备时到来,我们更应该学会边做边学,而不是等到学完再做,种一棵树最好的时间是十年前,其次是现在,写给可能有一些纠结的大家,也写给自己,那我们下篇见!over!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/790177.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单链表--续(C语言详细版)

2.6 在指定位置之前插入数据 // 在指定位置之前插入数据 void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x); 分为两种情况&#xff1a;1. 插入的数据在链表中间&#xff1b;2. 插入的数据在链表的前面。 // 在指定位置之前插入数据 void SLTInsert(SLTNode** …

TISAX认证是什么?

TISAX认证是一种针对汽车行业数据安全和隐私保护的评估认证&#xff0c;其全称在不同资料中有所差异&#xff0c;但普遍认可的是它作为汽车行业信息安全评估体系的重要性。以下是对TISAX认证的详细解读&#xff1a; 一、背景和目的 随着汽车技术的不断发展&#xff0c;汽车数…

MySQL—统计函数和数学函数以及GROUP BY配合HAVING

合计/统计函数 count -- 演示 mysql 的统计函数的使用 -- 统计一个班级共有多少学生&#xff1f; SELECT COUNT(*) FROM student -- 统计数学成绩大于 90 的学生有多少个&#xff1f; SELECT COUNT(*) FROM student WHERE math > 90 -- 统计总分大于 250 的人数有多少&…

git-工作场景

1. 远程分支为准 强制切换到远程分支并忽略本地未提交的修改 git fetch origin # 获取最新的远程分支信息 git reset --hard origin/feature_server_env_debug_20240604 # 强制切换到远程分支&#xff0c;并忽略本地修改 2. 切换分支 1. **查看所有分支&#xff1a;**…

NewStarCTF2023-Misc

目录 week1 CyberChefs Secret 机密图片 流量&#xff01;鲨鱼&#xff01; 压缩包们 空白格 隐秘的眼睛 week2 新建Word文档 永不消逝的电波 1-序章 base! WebShell的利用 Jvav week3 阳光开朗大男孩 大怨种 2-分析 键盘侠 滴滴滴 week4 通大残 Nmap 依…

buuctf被嗅探的流量

下载出来是一个流量分析题 因为题目说了是联网状态下 嗅探到 所以一定有http协议 这里设置过滤器 一个一个去找吧 目前感觉wireshark的题都是http,太难的也不会

最后纪元Last Epoch可以通过什么搬砖 游戏搬砖教程

来喽来喽&#xff0c;最后纪元&#xff0c;一款《最后纪元》是一款以获得战利品为基础的暗黑风格动作RPG游戏&#xff0c;玩家将从2281年的毁灭时代追溯到由女神Eterra创造的世界&#xff0c;通过多个时代与黑暗的命运对抗&#xff0c;找到拯救世界的方式。游戏有五种职业&…

二叉平衡树(左单旋,右单旋,左右双旋、右左双旋)

一、AVL树&#xff08;二叉平衡树&#xff1a;高度平衡的二叉搜索树&#xff09; 0、二叉平衡树 左右子树高度差不超过1的二叉搜索树。 public class AVLTree{static class AVLTreeNode {public TreeNode left null; // 节点的左孩子public TreeNode right null; // 节点的…

【Unity2D 2022:NPC】制作NPC

一、创建NPC角色 1. 创建JambiNPC并同时创建Jambi站立动画 &#xff08;1&#xff09;点击第一张图片&#xff0c;按住shift不松&#xff0c;再选中后两张图片&#xff0c;拖到层级面板中 &#xff08;2&#xff09;将动画资源文件保存到Animation Clips文件夹中 &#xff08;…

三维引擎实践 - OSG渲染线程创建过程(未完待续)

一&#xff1a;概述 一个3D应用程序&#xff0c;在创建好图形窗口之后&#xff0c;就要使用该窗口的OpenGL上下文进行渲染相关工作了&#xff0c;本节分析下OSG源码中渲染线程的建立过程。 二&#xff1a;OSG渲染线程用到了哪些类&#xff1f; 1. GraphicsThread 类&#xff0c…

政安晨:【Keras机器学习示例演绎】(五十二)—— 使用门控残差和变量选择网络进行分类

目录 简介 数据集 安装准备 数据准备 定义数据集元数据 创建用于训练和评估的 tf.data.Dataset 创建模型输入 对输入特征进行编码 实施门控线性单元 实施门控余留网络 实施变量选择网络 创建门控残差和变量选择网络模型 编译、训练和评估模型 政安晨的个人主页&am…

怎么判断自己是否适合学习PMP?

判断自己是否适合学习PMP项目管理专业人士认证&#xff0c;可以从以下几个方面进行考量&#xff1a; 1、职业发展需求&#xff1a; 如果您在项目管理领域工作&#xff0c;或计划未来从事相关工作&#xff0c;PMP认证能显著提升您的竞争力。 对于项目经理、产品经理、技术领导…

什么是边缘计算?创造一个更快、更智慧、更互联的世界

前言 如今&#xff0c;数十亿物联网传感器广泛部署在零售商店、城市街道、仓库和医院等各种场所&#xff0c;正在生成大量数据。从这些数据中更快地获得洞察&#xff0c;意味着可以改善服务、简化运营&#xff0c;甚至挽救生命。但要做到这一点&#xff0c;企业需要实时做出决策…

【ESP32】打造全网最强esp-idf基础教程——16.SmartConfig一键配网

SmartConfig一键配网 一、SmartConfig知识扫盲 在讲STA课程的时候&#xff0c;我们用的是代码里面固定的SSID和密码去连接热点&#xff0c;但实际应用中不可能这么弄&#xff0c;我们得有办法把家里的WiFi SSID和密码输入到设备里面去&#xff0c;对于带屏带输入设备还…

15.x86游戏实战-汇编指令jmp call ret

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 工具下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1rEEJnt85npn7N38Ai0_F2Q?pwd6tw3 提…

【服务器】在Linux查看运行的Python程序,并找到特定的Python程序

在Linux查看运行的Python程序并找到特定的Python程序 写在最前面1. 使用ps命令查看所有Python进程查看详细信息 2. 使用pgrep命令查找Python进程ID 3. 使用top或htop命令使用top命令使用htop命令 4. 使用lsof命令查找Python进程打开的文件 5. 使用nvidia-smi命令查看GPU使用情况…

Cancer Cell | 卞修武院士/时雨/平轶芳团队揭示胶质瘤巨噬细胞研究全新视角

胶质母细胞瘤&#xff08;glioblastoma&#xff0c;GBM&#xff09;作为最常见的恶性脑肿瘤之一&#xff0c;其肿瘤微环境高度复杂且侵袭性极强。肿瘤相关巨噬细胞&#xff08;TAMs&#xff09;在胶质瘤发展和免疫抑制中扮演着关键角色&#xff0c;尽管靶向TAMs的治疗策略已经取…

68.SAP FICO - 记账码学习

目录 定义 用途 配置步骤 定义记账码 - OB41 配置会计科目类型 在会计中&#xff0c;“借”和“贷”是记账符号&#xff0c;代表了记账的方向。而在SAP中却没有大家熟知的记账符号“借”和“贷”&#xff0c;那SAP中如何录入凭证呢&#xff1f;其实&#xff0c;SA…

MT3054 搭积木

1.思路&#xff1a; 把二维矩阵转化成一维编号&#xff0c;之后将编号使用并查集&#xff0c;看最后是否在同一个集合中即可。 2.代码&#xff1a; #include <bits/stdc.h> using namespace std; const int N 1e3 10; int n, m, cnt, root; int fa[N * N]; int dx[…

09.C2W4.Word Embeddings with Neural Networks

往期文章请点这里 目录 OverviewBasic Word RepresentationsIntegersOne-hot vectors Word EmbeddingsMeaning as vectorsWord embedding vectors Word embedding processWord Embedding MethodsBasic word embedding methodsAdvanced word embedding methods Continuous Bag-…