一、YOLO V10安装、使用、训练大全

YOLO V10安装、使用、训练大全

  • 一、下载官方源码
  • 二、配置conda环境
  • 三、安装YOLOV10依赖
  • 四、使用官方YOLO V10模型
    • 1.下载模型
    • 2.使用模型
      • 2.1 图片案例
  • 五、制作数据集
    • 1.数据集目录结构
    • 2.标注工具
      • 2.1 安装标注工具
      • 2.2 运行标注工具
      • 2.3 设置自动保存
      • 2.4 切换yolo模式
      • 2.5 开始标注
      • 2.6 数据集准备
        • 2.6.1 数据集文件夹准备
        • 2.6.2 xml格式转yolo的txt训练格式
    • 3.训练
      • 3.1 创建训练配置文件
      • 3.2 命令训练
      • 3.3 代码训练
    • 4.测试模型
      • 4.1 图片
        • 4.1.1 命令行
        • 4.1.2 代码
      • 4.2 视频
        • 4.2.1 命令行
        • 4.2.2 代码

一、下载官方源码

  • 源码点击下载

二、配置conda环境

# 1.在conda创建python3.9环境
conda create -n yolov10 python=3.9
# 2.激活切换到创建的python3.9环境
conda activate yolov10

三、安装YOLOV10依赖

# 1.切换到yolov10源码根目录下,安装依赖
# 注意:会自动根据你是否有GPU自动选择pytorch版本进行按照,这里不需要自己去选择pytorch和cuda按照,非常良心
pip install -r requirements.txt -i https://pypi.doubanio.com/simple
# 2.运行下面的命令,才可以在命令行使用yolo等命令
pip install -e .

四、使用官方YOLO V10模型

1.下载模型

在这里插入图片描述

  • 模型下载
    • YOLOv10-N:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt
    • YOLOv10-S:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt
    • YOLOv10-M:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt
    • YOLOv10-B:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt
    • YOLOv10-L:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt
    • YOLOv10-X:https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt
  • 下载完放入源码根目录

2.使用模型

2.1 图片案例

import cv2
from ultralytics import YOLOv10

# 加载模型
model = YOLOv10("yolov10m.pt")

# 批量运算
results = model(["./datasets/group1/images/train/9597185011003UY_20240610_092234_555.png"], stream=True)

for result in results:
    boxes_cls_len = len(result.boxes.cls)
    if not boxes_cls_len:
        # 没有检测到内容
        continue
    for boxes_cls_index in range(boxes_cls_len):
        # 获取类别id
        class_id = int(result.boxes.cls[boxes_cls_index].item())
        # 获取类别名称
        class_name = result.names[class_id]

        # 获取相似度
        similarity = result.boxes.conf[boxes_cls_index].item()

        # 获取坐标值,左上角 和 右下角:lt_rb的值:[1145.1351318359375, 432.6763000488281, 1275.398681640625, 749.5224609375]
        lt_rb = result.boxes.xyxy[boxes_cls_index].tolist()
        # 转为:[[1145.1351318359375, 432.6763000488281], [1275.398681640625, 749.5224609375]]
        lt_rb = [[lt_rb[0], lt_rb[1]], [lt_rb[0], lt_rb[1]]]

        print("类别:", class_name, "相似度:", similarity, "坐标:", lt_rb)

    # 图片展示
    annotated_image = result.plot()
    annotated_image = annotated_image[:, :, ::-1]
    if annotated_image is not None:
        cv2.imshow("Annotated Image", annotated_image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

五、制作数据集

  • 一般会将所有图片放到一个文件夹,打完标注后,从总的文件夹中,分别分不同的图片到训练集和数据集

1.数据集目录结构

在这里插入图片描述

2.标注工具

  • Labelimg是一款开源的数据标注工具,可以标注三种格式。
    • VOC标签格式,保存为xml文件。
    • yolo标签格式,保存为txt文件。
    • createML标签格式,保存为json格式。

2.1 安装标注工具

pip install labelimg -i https://pypi.doubanio.com/simple

2.2 运行标注工具

在这里插入图片描述

  • labelimg:运行工具
  • images:图片文件夹路径
  • classes.txt:类别的文件
labelimg images label/classes.txt

在这里插入图片描述

2.3 设置自动保存

在这里插入图片描述

2.4 切换yolo模式

在这里插入图片描述

2.5 开始标注

在这里插入图片描述
在这里插入图片描述

标注完退出软件即可

2.6 数据集准备

2.6.1 数据集文件夹准备

在这里插入图片描述

yolo的label文件内容:<class_index> <x_center> <y_center> <width> <height>

2.6.2 xml格式转yolo的txt训练格式
  • 运行下面脚本,就会转换
import os
import xml.etree.ElementTree as ET

classes = ['hero', 'monster', 'goods']


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(xml_file_paths, is_delete=False):
    """将某个文件夹下面所有的xml转换为yolo格式"""
    for xml_file_path in xml_file_paths:
        xml_file_dir, xml_file_name = os.path.split(xml_file_path)
        in_file = open(xml_file_path, 'r')
        out_file = open(os.path.join(xml_file_dir, xml_file_name[:-4]) + '.txt', 'w')
        tree = ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)

        for obj in root.iter('object'):
            cls = obj.find('name').text
            if cls not in classes:
                print(cls)
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            bb = convert((w, h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


def traverse_folder(folder_path):
    """获取某个文件夹下面所有的xml文件"""
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.lower().endswith(('.xml')):
                yield os.path.join(root, file)


if __name__ == '__main__':
    convert_annotation(traverse_folder(os.path.join(".", "datasets", "group1", "labels")))

在这里插入图片描述

  • txt格式就是yolo训练的格式

3.训练

3.1 创建训练配置文件

  • group1.yaml:文件和datasets文件夹同一个目录
path: group1 # dataset root dir
train: images/train # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
  0: hero
  1: monster
  2: goods

3.2 命令训练

yolo task=detect mode=train data=group1.yaml model=yolov10m.pt epochs=100 batch=16 device=cpu plots=True
  • 上述各个参数解释如下,请根据自己的情况修改。
    • yolo:运行yolo程序
    • task=detect:指定任务为检测(detect)。YOLO模型可以用于不同的任务,如检测、分类等,这里明确指定为检测任务。
    • mode=train:指定模式为训练(train)。这意味着你将使用提供的数据集来训练模型。
    • data=group1.yaml:指定你自己的数据集yaml文件
    • model=yolov10m.pt: 指定下载的yolov10预训练权重文件
    • epochs=100:设置训练轮次,可以先设置一个5轮或者10轮,测试看看,顺利进行再设置大一点进行下一步训练。
    • batch=4:设置训练集加载批次,主要是提高训练速度,具体得看你的显卡或者内存容量。如果显存大,则可以设置大一些。或许训练再详细讲解如何设置
    • device=0:指定训练设备,如果没有gpu,则令device=cpu,如果有一个gpu,则令device=0,有两个则device=0,1以此类推进行设置。
    • plots:指定在训练过程中生成图表(plots)。这可以帮助你可视化训练进度,如损失函数的变化等。

3.3 代码训练

  • 待补充

4.测试模型

4.1 图片

4.1.1 命令行
yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=test_images_1/veh2.jpg
  • 上述各个参数解释如下,请根据自己的情况修改。
    • yolo:运行yolo程序
    • task=detect:指定任务为检测(detect)。YOLO模型可以用于不同的任务,如检测、分类等,这里明确指定为检测任务。
    • mode=predict:设置模式为预测(predict)。这意味着模型将使用提供的权重和图像进行预测,而不是进行训练。
    • conf=0.25:设置置信度阈值为0.25。这意味着只有模型预测置信度大于或等于0.25的检测结果才会被考虑。
    • save=True:指示模型保存预测结果。这通常会将结果保存为图像文件,其中检测到的对象会被标记出来。
    • model=runs/detect/train/weights/best.pt:指定模型权重文件的位置。这里,best.pt是训练过程中保存的最佳权重文件,用于进行预测。
    • source=test_images_1/veh2.jpg:指定要检测的源图像。这里,veh2.jpg是要进行对象检测的图像文件。
4.1.2 代码
from ultralytics import YOLOv10
import supervision as sv
import cv2

classes = {0: 'licence'}

model = YOLOv10('runs/detect/train6/weights/best.pt')
image = cv2.imread('veh2.jpg')

results = model(source=image, conf=0.25, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
# 使用新的标注器
bounding_box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator()

labels = [
    f"{classes[class_id]} {confidence:.2f}"
    for class_id, confidence in zip(detections.class_id, detections.confidence)
]

# 首先使用边界框标注器
annotated_image = bounding_box_annotator.annotate(
    image.copy(), detections=detections
)

# 然后使用标签标注器
annotated_image = label_annotator.annotate(
    annotated_image, detections=detections, labels=labels
)

cv2.imshow('result', annotated_image)
cv2.waitKey()
cv2.destroyAllWindows()

4.2 视频

4.2.1 命令行
yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=b.mp4
  • 上述各个参数解释如下,请根据自己的情况修改。
    • yolo:运行yolo程序
    • task=detect:指定任务为检测(detect)。YOLO模型可以用于不同的任务,如检测、分类等,这里明确指定为检测任务。
    • mode=predict:设置模式为预测(predict)。这意味着模型将使用提供的权重和图像进行预测,而不是进行训练。
    • conf=0.25:设置置信度阈值为0.25。这意味着只有模型预测置信度大于或等于0.25的检测结果才会被考虑。
    • save=True:指示模型保存预测结果。这通常会将结果保存为图像文件,其中检测到的对象会被标记出来。
    • model=runs/detect/train/weights/best.pt:指定模型权重文件的位置。这里,best.pt是训练过程中保存的最佳权重文件,用于进行预测。
    • source=b.mp4:指定要检测的源视频。
4.2.2 代码
from ultralytics import YOLOv10
import supervision as sv
import cv2

classes = {0: 'licence'}

model = YOLOv10('runs/detect/train6/weights/best.pt')


def predict_and_detect(image):
    results = model(source=image, conf=0.25, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results)
    # 使用新的标注器
    bounding_box_annotator = sv.BoundingBoxAnnotator()
    label_annotator = sv.LabelAnnotator()

    labels = [
        f"{classes[class_id]} {confidence:.2f}"
        for class_id, confidence in zip(detections.class_id, detections.confidence)
    ]

    # 首先使用边界框标注器
    annotated_image = bounding_box_annotator.annotate(
        image.copy(), detections=detections
    )

    # 然后使用标签标注器
    annotated_image = label_annotator.annotate(
        annotated_image, detections=detections, labels=labels
    )

    return annotated_image


def create_video_writer(video_cap, output_filename):
    # grab the width, height, and fps of the frames in the video stream.
    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(video_cap.get(cv2.CAP_PROP_FPS))
    # initialize the FourCC and a video writer object
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    writer = cv2.VideoWriter(output_filename, fourcc, fps,
                             (frame_width, frame_height))
    return writer


video_path = 'b.mp4'
cap = cv2.VideoCapture(video_path)

output_filename = "out.mp4"
writer = create_video_writer(cap, output_filename)

while True:
    success, img = cap.read()
    if not success:
        break
    frame = predict_and_detect(img)
    writer.write(frame)
    cv2.imshow("frame", frame)

    if cv2.waitKey(1) & 0xFF == 27:  # 按下Esc键退出
        break

cap.release()
writer.release()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/788518.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mosh|内连接、外连接、左连接、右连接(未完)

下图取自菜鸟教程&#xff0c;侵权删&#xff5e; 一、内连接&#xff1a;Inner Joins 模版&#xff1a;SELECT * FROM A JOIN B ON 条件 含义&#xff1a;返回A与B的交集&#xff0c;列为AB列之和 练习&#xff1a;将order_items表和products表连接&#xff0c;返回产品id和…

Qt:12.输入类控件(QSpinBox-整数值输入的小部件、QDateEdit、QTimeEdit、QDateTimeEdit- 日期和时间输入的控件)

目录 一、QSpinBox-整数值输入的小部件&#xff1a; 1.1QSpinBox介绍&#xff1a; 1.2属性介绍&#xff1a; 1.3通用属性介绍&#xff1a; 1.4信号介绍&#xff1a; 二、QDateEdit、QTimeEdit、QDateTimeEdit- 日期和时间输入的控件&#xff1a; 2.1QDateEdit、QTimeEdit…

文件操作和IO流(Java版)

前言 我们无时无刻不在操作文件。可以说&#xff0c;我们在电脑上能看到的图片、视频、音频、文档都是一个又一个的文件&#xff0c;我们需要从文件中读取我们需要的数据&#xff0c;将数据运算后也需要将结果写入文件中长期保存。可见文件的重要性&#xff0c;今天我们就来简…

Gemma2——Google 新开源大型语言模型完整应用指南

0.引言 Gemma 2以前代产品为基础&#xff0c;提供增强的性能和效率&#xff0c;以及一系列创新功能&#xff0c;使其在研究和实际应用中都具有特别的吸引力。Gemma 2 的与众不同之处在于&#xff0c;它能够提供与更大的专有模型相当的性能&#xff0c;但其软件包专为更广泛的可…

北斗防爆手持终端在化工厂的安全性能分析

北斗防爆手持终端在化工厂中的应用显著提升了安全性能&#xff0c;其卓越的防爆设计、高精度定位与监控功能、实时通信能力以及多功能集成特性&#xff0c;共同构筑了化工厂安全生产的坚实防线&#xff0c;确保了巡检人员与设备在复杂环境下的安全作业与高效管理。 北斗防爆手持…

[Linux][Shell][Shell基础] -- [Shebang][特殊符号][变量][父子Shell]详细讲解

目录 0.前置知识1.Shebang2.Linux特殊符号整理3.变量4.环境变量5.父子shell0.概念1.创建进程列表(创建子shell执行命令) 6.内置命令 vs 外置命令 0.前置知识 #用于注释shell脚本语⾔属于⼀种弱类型语⾔&#xff1a;⽆需声明变量类型&#xff0c;直接定义使⽤shell三剑客&#…

148. 排序链表

https://leetcode.cn/problems/sort-list/description/https://leetcode.cn/problems/sort-list/description/ 解题思路&#xff1a; 归并排序&#xff0c;先拿到链表长度&#xff0c;每次遍历到一半&#xff0c;进行分割&#xff0c;后序双指针合并。 /*** Definition for sin…

图论---匈牙利算法求二分图最大匹配的实现

开始编程前分析设计思路和程序的整体的框架&#xff0c;以及作为数学问题的性质&#xff1a; 程序流程图&#xff1a; 数学原理&#xff1a; 求解二分图最大匹配问题的算法&#xff0c;寻找一个边的子集&#xff0c;使得每个左部点都与右部点相连&#xff0c;并且没有两条边共享…

操作系统|day1.了解操作系统

文章目录 了解操作系统定义目的操作系统体系结构功能特征操作系统的区别(64位与32位)操作系统的地址内存管理缓存 了解操作系统 定义 操作系统是控制管理计算机系统的硬软件,分配调度资源的系统软件 目的 方便性,有效性(提高系统资源的利用率,提高系统的吞吐量) 操作系统体…

android13 固定U盘链接 SD卡链接 TF卡链接 硬盘链接

1.前言 有些客户使用的应用并不带有自动监听U盘 sd卡广播的代码,使用的代码是固定的地址,这样的话,就需要我们将系统的挂载目录固定了。 原始路径 /storage/3123-19FA 增加链接 /storage/upan_000 -> /storage/3123-19FA 2. 首先如果是应用本身监听的话,使用的是 /…

Linux Mac 安装Higress 平替 Spring Cloud Gateway

Linux Mac 安装Higress 平替 Spring Cloud Gateway Higress是什么?传统网关分类Higress定位下载安装包执行安装命令执行脚本 安装成功打开管理界面使用方法configure.shreset.shstartup.shshutdown.shstatus.shlogs.sh Higress官网 Higress是什么? Higress是基于阿里内部的…

CentOS 8升级gcc版本

1、查看gcc版本 gcc -v发现gcc版本为8.x.x&#xff0c;而跑某个项目的finetune需要gcc-9&#xff0c;之前搜索过很多更新gcc版本的方式&#xff0c;例如https://blog.csdn.net/xunye_dream/article/details/108918316?spm1001.2014.3001.5506&#xff0c;但执行指令 sudo yu…

S32V234平台开发(一)快速使用

快速使用 准备供电复位选择串口通信启动选择显示登陆系统 准备供电 s32v234可以使用两种电源供电 一种是左边电源端子&#xff0c;一种是右边电源适配器(12V 3A) 注意:不要同时使用两种电源同时供电 复位选择 Pressing POR RESET pulls active low EXT_POR signal on S32V2…

使用bypy丝滑传递百度网盘-服务器文件

前言 还在为百度网盘的数据集难以给服务器做同步而痛苦吗&#xff0c;bypy来拯救你了&#xff01;bypy是一个强大而灵活的百度网盘命令行客户端工具。它是基于Python开发的开源项目&#xff0c;为用户提供了一种通过命令行界面与百度网盘进行交互的方式。使用bypy&#xff0c;…

自动驾驶AVM环视算法--540度全景的算法实现和exe测试demo

参考&#xff1a;金书世界 540度全景影像是什么 540度全景影像是在360度全景影像基础上的升级功能&#xff0c;它增加了更多的摄像头来收集周围的图像数据。通常&#xff0c;这些摄像头分布在车辆的更多位置&#xff0c;例如车顶、车底等&#xff0c;以便更全面地捕捉车辆周围…

C++ | Leetcode C++题解之第226题翻转二叉树

题目&#xff1a; 题解&#xff1a; class Solution { public:TreeNode* invertTree(TreeNode* root) {if (root nullptr) {return nullptr;}TreeNode* left invertTree(root->left);TreeNode* right invertTree(root->right);root->left right;root->right …

内网信息收集:手动、脚本和工具查IP、端口

1.手动查IP和端口 2.工具查IP 3.工具查端口 我们在内网中拿下目标机器后&#xff0c;需要进行一系列的信息收集&#xff0c;以下为总结的收集方法 1.手动信息收集&#xff1a; 以下命令在CS执行时命令前须加shell,如&#xff1a;shell ipconfig 1.收集IP网卡&#xff1a; ip…

【UE5.3】笔记9

1、如何将BSP笔刷转换为静态网格体&#xff1f; 在笔刷的细节的高级里面找到创建静态网格体&#xff1b; 2、如何将自己创建的一个由多个网格体或其他组件组合成的道具转换为个整体即蓝图类&#xff1f;---即把多个Actor转换成蓝图类 选中所要整合的对象&#xff0c;要全选中…

基于Spring Boot的旅游信息推荐信息系统设计与实现(源码+lw+部署+讲解)

技术指标 开发语言&#xff1a;Java 框架&#xff1a;Spring BootJSP JDK版本&#xff1a;JDK1.8 数据库&#xff1a;MySQL5.7 数据库工具&#xff1a;Navicat16 开发软件&#xff1a;IDEA Maven包&#xff1a;Maven3.6.3 浏览器&#xff1a;IE浏览器 功能描述 旅游信…

压缩感知3——重构算法正交匹配追踪算法

算法流程 问题的实质是&#xff1a;AX Y 求解&#xff08;A是M维&#xff0c;Y是N维且N>>M并且稀疏度K<M&#xff09;明显X有无穷多解&#xff0c;重构过程是M次采样得到的采样值升维的过程。OMP算法的具体步骤&#xff1a;(1)用X表示信号&#xff0c;初始化残差e0 …