移动通信系统的LMS自适应波束成形技术matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
idxx=0;
while idxx<20
.....................................................................
    
    %信道生成

    receivedW = collectPlaneWave(GM.BSarray, [y_1*(1/sqrt(path_loss_t1)) y_2*(1/sqrt(path_loss_t2)) y_3*(1/sqrt(path_loss_i1)) y_3*(1/sqrt(path_loss_i2))], [t1Angles' t2Angles' i1Angles' i2Angles'], Pars.fc);
  
    %添加噪声
    chOut = awgn(receivedW, snr, 'measured');

     %在终端1上没有波束赋形的情况下计算BER
     subplot(3,2,3);
     title='终端1上没有波束赋形的星座图';
     bits=func_OFDM_demod(y_ofdm,chOut(:,end),NOrder,true,title);
     [numbError,ratio]=biterr(x_1,bits);
 
     
     %在终端2上没有波束赋形的情况下计算BER
     subplot(3,2,4);
     title='终端2上没有波束赋形的星座图';
     bits=func_OFDM_demod(y_ofdm,chOut(:,end),NOrder,true,title);
     [numbError,ratio]=biterr(x_2,bits);
 
     %相移波束赋形
  
    % 终端1通过PhaseShiftBeamformer进行波束赋形
    beamformerV1 = phased.PhaseShiftBeamformer('SensorArray',GM.BSarray,'OperatingFrequency',Pars.fc,'PropagationSpeed',Pars.c,'Direction',t1Angles','WeightsOutputPort',true);
    [y1,w1]      = beamformerV1(chOut);

     %在终端1上使用相移波束赋形的情况下计算BER
    subplot(3,2,5); 
    title='终端1上使用相移波束赋形的星座图';
    bits=func_OFDM_demod(y_ofdm,y1,NOrder,true,title);
    [numbError,ratio]=biterr(x_1,bits);
 
     
    % 终端2通过PhaseShiftBeamformer进行波束赋形
    beamformerV2 = phased.PhaseShiftBeamformer('SensorArray',GM.BSarray,'OperatingFrequency',Pars.fc,'PropagationSpeed',Pars.c,'Direction',t2Angles','WeightsOutputPort',true);
    [y2,w2] = beamformerV2(chOut);


     %使用LMS算法进行波束赋形
    subplot(3,2,6); 
    title='终端2上使用相移波束赋形的星座图';
    bits=func_OFDM_demod(y_ofdm,y2,NOrder,true,title);
    [numbError,ratio]=biterr(x_2,bits);
 
    
 
    figure(2);
    subplot(2,2,[1,2]);
    polarplot( deg2rad(az_t1),t1_dist_BS/max(t1_dist_BS,t2_dist_BS), 'or','LineWidth',1.5)
    hold on
    polarplot( deg2rad(az_t2),t2_dist_BS/max(t1_dist_BS,t2_dist_BS),'ob','LineWidth',1.5)
    hold on

    H=pattern(GM.BSarray,Pars.fc,[-180:180],el_t1,'PropagationSpeed',Pars.c,'Type','power','CoordinateSystem','polar','Weights',conj(w1));
    hold on 
    polarplot(H,'r')

    H=pattern(GM.BSarray,Pars.fc,[-180:180],el_t2,'PropagationSpeed',Pars.c,'Type','power','CoordinateSystem','polar','Weights',conj(w2));

    hold on 
    polarplot(H,'b')
   
   
    
    %计算LMS权重
    optimalWeight1 = func_LMS(chOut,y_1,numArray);  
    optimalWeight2 = func_LMS(chOut,y_2,numArray);   

    
    %将接收信号与权重相乘
    y1=chOut*((optimalWeight1));
    y2=chOut*((optimalWeight2));     
    
    %在终端1上使用LMS波束赋形的情况下计算BER
    subplot(2,2,3);
    title='终端1上使用LMS的星座图';
     bits=func_OFDM_demod(y_ofdm,(y1),NOrder,true,title);
    [numbError,ratio]=biterr(x_1,bits);
 
    
    %在终端2上使用LMS波束赋形的情况下计算BER
    subplot(2,2,4);
    title='终端2上使用LMS的星座图';
    bits=func_OFDM_demod(y_ofdm,(y2),NOrder,true,title);
    [numbError,ratio]=biterr(x_2,bits);
 
    pause(1);

end
0044

4.算法理论概述

        在移动通信系统中,由于信号传播环境的复杂性,通信信号受到多径效应、干扰和噪声的影响,导致信号质量下降。自适应波束成形技术可以在多天线接收端对信号进行处理,以增强感兴趣的信号,并抑制不需要的干扰和噪声。

        自适应波束成形技术的核心思想是通过调整多个天线的权重系数,使得在特定方向上的信号增益最大化,同时减小其他方向上的信号增益。其中,最小均方(LMS)算法是一种常用的自适应算法,用于计算权重系数。以下是LMS自适应波束成形的基本原理:

LMS自适应波束成形技术的实现过程包括以下步骤:

数据采集: 从多个天线接收信号,并对信号进行预处理,如去除直流分量等。

初始化权重: 初始时,设置权重向量的初始值,通常为随机值或单位向量。

计算输出: 根据当前权重向量和接收信号计算输出信号。

计算误差: 计算期望响应与实际输出之间的误差信号。

更新权重: 使用LMS算法更新权重向量的系数。

重复迭代: 重复进行2-5步骤,直至误差信号达到满意的水平或达到预设的迭代次数。

LMS自适应波束成形技术在移动通信系统中有广泛的应用,包括但不限于以下领域:

无线通信: 在多天线接收端,通过抑制干扰和多径效应,提高信号质量和通信效率。
无线局域网(WLAN): 用于提升Wi-Fi信号覆盖范围和稳定性。
无线传感器网络: 用于在复杂的信号环境中,准确地接收和识别传感器数据。

       LMS自适应波束成形技术是一种重要的信号处理方法,通过调整天线的权重系数,实现对特定方向上信号的增强和干扰的抑制。在移动通信系统中,它可以显著提升信号的质量和可靠性,适用于多种应用场景。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/78816.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据分析 | 调用Optuna库实现基于TPE的贝叶斯优化 | 以随机森林回归为例

1. Optuna库的优势 对比bayes_opt和hyperoptOptuna不仅可以衔接到PyTorch等深度学习框架上&#xff0c;还可以与sklearn-optimize结合使用&#xff0c;这也是我最喜欢的地方&#xff0c;Optuna因此特性可以被使用于各种各样的优化场景。 2. 导入必要的库及加载数据 用的是sklea…

Ordinals 之后,以太坊铭文协议 Ethscriptions 如何再塑 NFT 资产形态

随着加密市场的发展&#xff0c;NFT 赛道逐渐形成了其独有的市场。但在加密熊市的持续影响下&#xff0c;今年 NFT 赛道的发展充满坎坷与挑战。据 NFTGO 数据显示&#xff0c;截至 8 月 7 日&#xff0c;与去年相比&#xff0c;NFT 市值总计约 56.4 亿美元&#xff0c;过去 1 年…

【业务功能篇69】Springboot 树形菜单栏功能设计

业务场景: 系统的界面&#xff0c;前端设计的时候&#xff0c;一般会给一个菜单栏&#xff0c;顶部横向以及左侧纵向的导航栏菜单&#xff0c;这里后端返回菜单栏的时候&#xff0c;就涉及层级父子项的问题&#xff0c;所以返回数据的时候&#xff0c;我们需要按照树化形式返回…

SpringBoot 操作Redis、创建Redis文件夹、遍历Redis文件夹

文章目录 前言依赖连接 RedisRedis 配置文件Redis 工具类操作 Redis创建 Redis 文件夹查询数据遍历 Redis 文件夹 前言 Redis 是一种高性能的键值存储数据库&#xff0c;支持网络、可基于内存亦可持久化的日志型&#xff0c;而 Spring Boot 是一个简化了开发过程的 Java 框架。…

CSRF

文章目录 CSRF(get)CSRF(post)CSRF Token CSRF(get) 根据提示的用户信息登录 点击修改个人信息 开启bp代理&#xff0c;点击submit 拦截到请求数据包 浏览器关闭代理 刷新页面 CSRF(post) 使用BP生成CSRF POC post请求伪造&#xff0c;可以通过钓鱼网站&#xff0c;诱导用户去…

【LeetCode】买卖股票的最佳时机最多两次购买机会

买卖股票的最佳时机 题目描述算法分析程序代码 链接: 买卖股票的最佳时机 题目描述 算法分析 程序代码 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();vector<vector<int>> f(n,vector<int>(3,-0x3f3f3f))…

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成 目录 数据生成 | MATLAB实现WGAN生成对抗网络数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 1.WGAN生成对抗网络&#xff0c;数据生成&#xff0c;样本生成程序&#xff0c;MATLAB程序&#xff1b; 2.适用于MATL…

基于 Debian 12 的MX Linux 23 正式发布!

导读MX Linux 是基于 Debian 稳定分支的面向桌面的 Linux 发行&#xff0c;它是 antiX 及早先的 MEPIS Linux 社区合作的产物。它采用 Xfce 作为默认桌面环境&#xff0c;是一份中量级操作系统&#xff0c;并被设计为优雅而高效的桌面与如下特性的结合&#xff1a;配置简单、高…

阿里云云解析DNS核心概念与应用

文章目录 1.DNS解析基本概念1.1.DNS基本介绍1.2.域名的分层结构1.3.DNS解析原理1.4.DNS递归查询和迭代查询的区别1.5.DNS常用的解析记录 2.使用DNS云解析将域名与SLB公网IP进行绑定2.1.进入云解析DNS控制台2.2.添加域名解析记录2.3.验证解析是否生效 1.DNS解析基本概念 DNS官方…

C++超基础语法

&#x1f493;博主个人主页:不是笨小孩&#x1f440; ⏩专栏分类:数据结构与算法&#x1f440; C&#x1f440; 刷题专栏&#x1f440; C语言&#x1f440; &#x1f69a;代码仓库:笨小孩的代码库&#x1f440; ⏩社区&#xff1a;不是笨小孩&#x1f440; &#x1f339;欢迎大…

SSH远程连接MacOS catalina并进行终端颜色配置

一、开关SSH服务 在虚拟机上安装了MacOS catalina&#xff0c;想要使用SSH远程进行连接&#xff0c;但是使用“系统偏好设置”/“共享”/“远程登录”开关进行打开&#xff0c;却一直是正在启动“远程登录”&#xff1a; 难道是catalina有BUG&#xff1f;不过还是有方法的&…

AcrelEMS-SW智慧水务能效管理平台解决方案-安科瑞黄安南

系统概述 安科瑞电气具备从终端感知、边缘计算到能效管理平台的产品生态体系&#xff0c;AcrelEMS-SW智慧水务能效管理平台通过在污水厂源、网、荷、储、充的各个关键节点安装保护、监测、分析、治理装置&#xff0c;用于监测污水厂能耗总量和能耗强度&#xff0c;重点监测主要…

Spring系列七:声明式事务

&#x1f418;声明式事务 和AOP有密切的联系, 是AOP的一个实际的应用. &#x1f432;事务分类简述 ●分类 1.编程式事务: 示意代码, 传统方式 Connection connection JdbcUtils.getConnection(); try { //1.先设置事务不要自动提交 connection.setAutoCommit(false…

【爬虫】爬取旅行评论和评分

以马蜂窝“普达措国家公园”为例&#xff0c;其评论高达3000多条&#xff0c;但这3000多条并非是完全向用户展示的&#xff0c;向用户展示的只有5页&#xff0c;数了一下每页15条评论&#xff0c;也就是75条评论&#xff0c;有点太少了吧&#xff01; 因此想了个办法尽可能多爬…

Swagger

目录 简介 使用方式&#xff1a; 常用注解 简介 使用Swagger你只需要按照他的规范去定义接口及接口相关信息再通过Swagger衍生出来的一系列项目和工具&#xff0c;就可以做到生成各种格式的接口文档&#xff0c;以及在线接口调试页面等等。 官网&#xff1a;https://swagger…

【0基础入门Python笔记】二、python 之逻辑运算和制流程语句

二、python 之逻辑运算和制流程语句 逻辑运算控制流程语句条件语句&#xff08;if语句&#xff09;循环结构&#xff08;for循环、while循环&#xff09;控制流程语句的嵌套以及elif 逻辑运算 Python提供基本的逻辑运算&#xff1a;不仅包括布尔运算&#xff08;and、or、not&…

基于深度信念神经网络+长短期神经网络的降雨量预测,基于dbn-lstm的降雨量预测,dbn原理,lstm原理

目录 背影 DBN神经网络的原理 DBN神经网络的定义 受限玻尔兹曼机(RBM) LSTM原理 DBN-LSTM的降雨量预测 基本结构 主要参数 数据 MATALB代码 结果图 展望 背影 DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,通过dbn进行无监督学习提取特征,然后长短期神经…

mysql 插入数据锁等待超时报错:Lock wait timeout exceeded; try restarting transaction

报错信息 Lock wait timeout exceeded; try restarting transaction 锁等待超时 Lock wait timeout exceeded; try restarting transaction&#xff0c;是当前事务在等待其它事务释放锁资源造成的 解决办法 1、数据库中执行如下sql&#xff0c;查看当前数据库的线程情况&…

[C++ 网络协议编程] TCP/IP协议

目录 1. TCP/IP协议栈 2. TCP原理 2.1 TCP套接字中的I/O缓冲 2.2 TCP工作原理 2.2.1 三次握手&#xff08;连接&#xff09; 2.2.2 与对方主机的数据交换 2.2.3 四次握手&#xff08;断开与套接字的连接&#xff09; TCP&#xff08;Transmission Control Protocol传输控…

python bytes基本用法

目录 1 第一个字符变大写&#xff0c;其余字符变小写 capitalize() 2 生成指定长度内容&#xff0c;然后把指定的bytes放到中间 center() 3 计数 count() 4 解码 decode() 5 是否以指定的内容结尾 endswith() 6 将制表符调整到指定大小 expandtabs() 7 寻找指…