大模型/NLP/算法面试题总结2——transformer流程//多头//clip//对比学习//对比学习损失函数

  • 用语言介绍一下Transformer的整体流程

1. 输入嵌入(Input Embedding)

输入序列(如句子中的单词)首先通过嵌入层转化为高维度的向量表示。嵌入层的输出是一个矩阵,每一行对应一个输入单词的嵌入向量。

2. 位置编码(Positional Encoding)

因为Transformer模型没有循环结构,所以需要通过位置编码(Positional Encoding)给每个单词提供位置信息。位置编码与输入嵌入向量相加,帮助模型理解单词在序列中的相对位置。

3. 编码器(Encoder)

编码器由多个相同的编码器层(Encoder Layers)堆叠而成,每个编码器层包括以下两个子层:

        a. 多头自注意力机制(Multi-Head Self-Attention Mechanism)

这个子层通过多个独立的注意力头(attention heads)计算输入序列的自注意力,捕捉不同位置的单词之间的关系。每个头的输出会被拼接并线性变换,产生最终的自注意力输出。

        b. 前馈神经网络(Feed-Forward Neural Network, FFNN)

自注意力的输出经过一个全连接的前馈神经网络,该网络包括两个线性变换和一个ReLU激活函数。

每个子层之后都有一个残差连接(Residual Connection)和层归一化(Layer Normalization),使训练更加稳定。

4. 解码器(Decoder)

解码器与编码器结构类似,也是由多个相同的解码器层(Decoder Layers)堆叠而成。每个解码器层包括以下三个子层:

        a. 掩码多头自注意力机制(Masked Multi-Head Self-Attention Mechanism)

与编码器中的自注意力类似,但在解码过程中使用了掩码机制,确保每个位置只能看到它之前的输出,避免信息泄露。

        b. 编码器-解码器注意力机制(Encoder-Decoder Attention Mechanism)

这个子层通过多头注意力机制关注编码器的输出,结合编码器的上下文信息生成解码器的输出。

        c. 前馈神经网络(Feed-Forward Neural Network, FFNN)

类似于编码器中的前馈神经网络。

每个子层之后也有残差连接和层归一化。

5. 输出层(Output Layer)

解码器的最终输出经过一个线性变换和Softmax层,生成对目标词汇表中每个单词的概率分布,最终选择概率最高的单词作为输出。

6. 损失函数和训练

通常使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型输出与真实标签之间的差异,并通过反向传播(Backpropagation)和优化算法(如Adam)来更新模型参数

Transformer模型通过并行计算注意力机制,实现了更高效、更强大的自然语言处理能力,广泛应用于机器翻译、文本生成、文本分类等任务。

·multi head-attention为什么不用一个头?

并行处理

信息多样性

减少冗余

灵活性

增强表达能力

·深度学习的三种并行方式:数据并行,模型并行,流水线并行

1. 数据并行(Data Parallelism)

概念:将整个训练数据集划分成多个小批次(mini-batches),然后将这些小批次分配到不同的处理单元(如多个GPU)上进行并行计算。

2. 模型并行(Model Parallelism)

概念:将模型的不同部分划分到不同的处理单元上,每个处理单元只负责计算模型的一部分。

3. 流水线并行(Pipeline Parallelism)

概念:结合数据并行和模型并行的方法,将模型的不同部分划分到不同的处理单元上,同时每个处理单元上并行处理多个数据批次。

  • 对于CLIP的了解?

CLIP(Contrastive Language–Image Pretraining)是OpenAI开发的一种模型,它通过对比学习来连接自然语言和图像,能够执行多种视觉和语言任务。以下是CLIP模型的主要概念和工作原理:

CLIP的主要概念

  1. 对比学习(Contrastive Learning)

    • CLIP使用对比学习来训练模型,将配对的图像和文本表示拉近,而将不匹配的图像和文本表示推远。
    • 通过这种方法,模型能够学习到图像和文本之间的相似性。
  2. 多模态模型(Multimodal Model)

    • CLIP同时处理图像和文本数据,具备多模态的理解能力。
    • 它由两个独立的编码器组成,一个用于图像(通常是基于ResNet或Vision Transformer的架构),另一个用于文本(通常是基于Transformer的架构)。
  3. 大规模预训练(Large-Scale Pretraining)

    • CLIP在大规模的图像-文本对数据集上进行预训练,涵盖广泛的图像和文本内容。
    • 这种预训练使得CLIP具备强大的泛化能力,可以适应多种下游任务。

CLIP的工作原理

  1. 输入数据

    • CLIP接收图像和文本对作为输入,每对数据包含一个图像和一个描述该图像的文本。
  2. 编码器

    • 图像编码器将输入图像转换为图像表示(高维向量)。
    • 文本编码器将输入文本转换为文本表示(高维向量)。
  3. 对比损失(Contrastive Loss)

    • 在训练过程中,CLIP使用对比损失函数,将正确配对的图像和文本表示拉近,而将不匹配的图像和文本表示推远。
    • 具体来说,使用一种基于内积的相似性度量(如余弦相似度),计算图像-文本对的相似度,并通过最大化正确对的相似度和最小化错误对的相似度来训练模型。
  4. 多任务应用

    • 预训练完成后,CLIP能够应用于多种任务,如图像分类、图像检索、文本生成等。
    • 例如,在图像分类任务中,可以通过计算输入图像与每个类别描述文本的相似度来进行分类;在图像检索任务中,可以通过文本描述检索相关图像。

CLIP的优势

  1. 零样本学习(Zero-Shot Learning)

    • CLIP在训练时不需要针对特定任务进行微调,能够直接进行零样本学习。
    • 这种能力使得CLIP能够在没有见过的新任务和新数据上表现出色。
  2. 多模态理解

    • CLIP同时处理图像和文本数据,具备多模态理解能力,能够处理复杂的跨模态任务。
  3. 广泛适用性

    • 由于在大规模数据集上进行预训练,CLIP在各种下游任务中表现出色,具备很强的泛化能力。

什么是对比学习?

对比学习(Contrastive Learning)是一种机器学习方法,特别是在无监督学习和自监督学习中广泛应用。其核心思想是通过比较不同样本之间的相似性和差异性来学习数据的表示或特征。这种方法不依赖于标签数据,而是通过样本之间的相互关系,使得模型能够学习到有意义的特征表示。

对比学习的基本原理

  1. 正负样本对:在对比学习中,通常会构建正样本对和负样本对。正样本对包括来自同一类别或具有相似特征的数据点,如不同角度的猫的照片;而负样本对则包括不同类别或不相似特征的数据点,如一张猫的照片和一张狗的照片。
  2. 目标:模型被训练以拉近相似的数据点的表示(即减少它们之间的距离),同时推开不相似的数据点的表示(即增加它们之间的距离)。

对比学习的应用领域

对比学习主要应用在以下领域:

  • 计算机视觉:在图像处理中,对比学习可以通过将一张图片的不同增强版本(如不同的裁剪、旋转或颜色调整)作为正样本对来训练模型,而将来自不同图片的表示作为负样本对
  • 自然语言处理:在自然语言处理任务中,对比学习可以用于学习句子的表示,通过比较语义上相似和不相似的句子对来训练模型。

对比学习的优势

  1. 利用未标记数据对比学习不依赖于大量的标注数据,因此可以利用大量未标注的数据来学习,从而节省标注成本。
  2. 提高模型性能:通过对比学习,模型能够学习到更鲁棒、更有区分力的特征表示,从而提高在各种任务上的性能。

对比学习的实例

在对比学习中,通常会使用两个网络(如一个目标网络和一个在线网络)来学习表示。在线网络的目标是预测目标网络在相同输入的不同增强版本上的表示。例如,BYOL(Bootstrap Your Own Latent)算法就采用了这种方式来促进网络学习到鲜明的特征表示。

  • 说几种对比学习的损失函数,以及它们的特点和优缺点

1、对比损失函数

对比损失主要用于度量正负样本对的距离差异,通常表示为:

优点:直观地拉进同类、推开异类;有无监督学习的能力,可以应用于大量无标注的数据;比较灵活,可以使用不同的相似性度量方法,如欧氏距离、余弦相似度。

缺点:对比损失的性能可能受到超参数(如margin值)的显著影响;对比损失的效果很大程度上依赖于数据的质量和多样性;在大规模数据集上,计算所有样本对之间的距离可能非常耗时。

2、三元组损失函数

三元组损失通过比较一个正样本对和一个负样本对的距离差异来训练模型。损失函数形式为:

优点:Triplet loss能够在训练中学习到更好的细微特征;通过设定margin值(阈值控制),可以控制正负样本之间的距离,从而调整模型对样本间相似性的敏感度;比较灵活,可以根据需要调整margin的值,以适应不同的任务和模型训练阶段。

缺点:三元组的选取可能导致数据分布不均,影响模型训练的稳定性;Triplet loss的收敛速度可能较慢,需要更多的迭代次数;Triplet loss更容易导致过拟合,特别是在数据集较小或特征维度较高的情况下。

3、infoNCE损失函数

nfoNCE损失是一种基于噪声对比估计(Noise Contrastive Estimation)的损失函数,常用于对比学习和自监督学习。形式为:

优点:通过计算正样本对和负样本对之间的交互信息来衡量相似度,提供了更加丰富的语义信息;InfoNCE损失通常包含归一化项,使得不同批次和不同样本之间的对比具有一致的重要性;InfoNCE损失不需要标签信息,适用于多种无监督学习任务

缺点:涉及复杂的数学运算,增加了计算的复杂度;可能受到温度参数(temperature)等超参数的显著影响;InfoNCE损失的效果也依赖于数据的质量和多样性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/787897.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

020-GeoGebra中级篇-几何对象之点与向量

本文概述了在GeoGebra中如何使用笛卡尔或极坐标系输入点和向量。用户可以通过指令栏输入数字和角度,使用工具或指令创建点和向量。在笛卡尔坐标系中,示例如“P(1,0)”;在极坐标系中,示例如“P(1;0)”或“v(5;90)”。文章还介绍了点…

SpringBoot + MyBatisPlus 实现多租户分库

一、引言 在如今的软件开发中,多租户(Multi-Tenancy)应用已经变得越来越常见。多租户是一种软件架构技术,它允许一个应用程序实例为多个租户提供服务。每个租户都有自己的数据和配置,但应用程序实例是共享的。而在我们的Spring Boot MyBati…

刷代码随想录有感(130):动态规划——编辑距离

题干&#xff1a; 代码&#xff1a; class Solution { public:int minDistance(string word1, string word2) {vector<vector<int>>dp(word1.size() 1, vector<int>(word2.size() 1));for(int i 0; i < word1.size(); i)dp[i][0] i;for(int j 0; j …

使用Mplayer实现MP3功能

核心功能 1. 界面设计 项目首先定义了一个clearscreen函数&#xff0c;用于清空屏幕&#xff0c;为用户界面的更新提供了便利。yemian函数负责显示主菜单界面&#xff0c;提供了包括查看播放列表、播放控制、播放模式选择等在内的9个选项。 2. 文件格式支持 is_supported_f…

数据抓取技术在视频内容监控与快速读取中的应用

引言 在数字化时代&#xff0c;视频内容的快速读取和监控对于内容提供商来说至关重要。思通数科的OPEN-SPIDER抓取技术为这一需求提供了高效的解决方案。 OPEN-SPIDER技术概述 OPEN-SPIDER是思通数科开发的一种先进的数据抓取技术&#xff0c;它能够&#xff1a; - 高效地从各…

Qt 音频编程实战项目

一Qt 音频基础知识 QT multimediaQMediaPlayer 类&#xff1a;媒体播放器&#xff0c;主要用于播放歌曲、网络收音 机等功能。QMediaPlaylist 类&#xff1a;专用于播放媒体内容的列表。 二 音频项目实战程序 //版本5.12.8 .proQT core gui QT multimedia greate…

基于深度学习的电影推荐系统

1 项目介绍 1.1 研究目的和意义 在电子商务日益繁荣的今天&#xff0c;精准预测商品销售数据成为商家提升运营效率、优化库存管理以及制定营销策略的关键。为此&#xff0c;开发了一个基于深度学习的商品销售数据预测系统&#xff0c;该系统利用Python编程语言与Django框架&a…

在RockyLinux上安装Solr8.11(新版本)

在RockyLinux上安装Solr8.11&#xff08;新版本&#xff09; 安装准备安装java环境 安装Solr下载修改配置开放端口验证一下 安装准备 安装java环境 搜索提供可安装的包 yum search java 我们在这里看到有很多&#xff0c;我这里安装的1.8版本。我们这里选择描述为Runtime en…

斯坦福大学博士在GitHub发布的漫画机器学习小抄,竟斩获129k标星

斯坦福大学数据科学博士Chris Albon在GitHub上发布了一份超火的机器学习漫画小抄&#xff0c;发布仅仅一天就斩获GitHub榜首标星暴涨120k&#xff0c;小编有幸获得了一份并把它翻译成中文版本&#xff0c;今天给大家分享出来&#xff01; 轻松的画风配上让人更容易理解的文字讲…

万字总结GBDT原理、核心参数以及调优思路

万字总结GBDT原理、核心参数以及调优思路 在机器学习领域&#xff0c;梯度提升决策树&#xff08;Gradient Boosting Decision Tree, GBDT&#xff09;以其卓越的预测性能和强大的模型解释能力而广受推崇。GBDT通过迭代地构建决策树&#xff0c;每一步都在前一步的残差上进行优…

【力扣高频题】042.接雨水问题

上一篇我们通过采用 双指针 的方法解决了 经典 容器盛水 问题 &#xff0c;本文我们接着来学习一道在面试中极大概率会被考到的经典题目&#xff1a;接雨水 问题 。 42. 接雨水 给定 n 个非负整数&#xff0c;表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子…

【高校科研前沿】中国农业大学姚晓闯老师等人在农林科学Top期刊发表长篇综述:深度学习在农田识别中的应用

文章简介 论文名称&#xff1a;Deep learning in cropland field identification: A review&#xff08;深度学习在农田识别中的应用&#xff1a;综述&#xff09; 第一作者及单位&#xff1a;Fan Xu&#xff08;中国农业大学土地科学与技术学院&#xff09; 通讯作者及单位&…

【电路笔记】-C类放大器

C类放大器 文章目录 C类放大器1、概述2、C类放大介绍3、C类放大器的功能4、C 类放大器的效率5、C类放大器的应用:倍频器6、总结1、概述 尽管存在差异,但我们在之前有关 A 类、B 类和 AB 类放大器的文章中已经看到,这三类放大器是线性或部分线性的,因为它们在放大过程中再现…

【WebGIS平台】传统聚落建筑科普数字化建模平台

基于上述概括出建筑单体的特征部件&#xff0c;本文利用互联网、三维建模和地理信息等技术设计了基于浏览器/服务器&#xff08;B/S&#xff09;的传统聚落建筑科普数字化平台。该平台不仅实现了对传统聚落建筑风貌从基础到复杂的数字化再现&#xff0c;允许用户轻松在线构建从…

Java线程池及面试题

1.线程池介绍 顾名思义&#xff0c;线程池就是管理一系列线程的资源池&#xff0c;其提供了一种限制和管理线程资源的方式。每个线程池还维护一些基本统计信息&#xff0c;例如已完成任务的数量。 总结一下使用线程池的好处&#xff1a; 降低资源消耗。通过重复利用已创建的…

去除Win32 Tab Control控件每个选项卡上的深色对话框背景

一般情况下&#xff0c;我们是用不带边框的对话框来充当Tab Control的每个选项卡的内容的。 例如&#xff0c;主对话框IDD_TABBOX上有一个Tab Control&#xff0c;上面有两个选项卡&#xff0c;第一个选项卡用的是IDD_DIALOG1充当内容&#xff0c;第二个用的则是IDD_DIALOG2。I…

Git本地仓库的搭建与使用

目录 一、前言 二、Linux下搭建 git 仓库 三、Windows下搭建 git 仓库 一、前言 做项目时&#xff0c;我们常常需要将自己的代码进行托管&#xff0c;但有时候 Github 的速度属实叫人流泪。有的人会选择 Gitee 等进行托管代码&#xff0c;这当然是可以的。那如果没有其他代码…

linux使用chattr与lsattr设置文件/目录防串改

背景 linux服务器下,防止某个文件/目录被串改(增删改),可以使用chattr与lsattr设置,这是一种保护机制,用于防止意外地修改或删除重要的文件内容。 chattr与lsattr使用 1.设置目录 图中/tmp/zhk,设置目录属性文件可能被设置为不可更改(immutable)或者只追加(append …

java Web学习笔记(一)

1. 前置学习知识 JavaScript学习笔记 CSS3学习笔记 html学习笔记 2. Tomcat介绍 前端App的运行环境&#xff1a; 服务器 --> JRE --> Tomcat --> App Tomcat目录文件介绍 bin:该目录下存放的是二进制可执行文件&#xff0c;如果是安装版&#xff0c;那么这个目…

leetcode判断二分图

判断二分图 图的问题肯定要用到深度优先遍历或者广度优先遍历&#xff0c;但又不是单纯的深度优先遍历算法和广度优先遍历算法&#xff0c;而是需要在遍历的过程中加入与解决题目相关的逻辑。 题干中说了&#xff0c;这个图可能不是连通图&#xff0c;这个提示有什么作用呢&a…