图像分割-编码解码网络的训练-kreas实现

一、数据集加载:

纯手工打造一个函数用来加载数据,数据分别为imagemask

我们所需要的类型:(B数量,长,宽,通道数),只要将数据加载成这样并mask和image对应就行。

第一步:

获取文件中所有的图片文件,并进行排序(mask和label的标签最好对应起来,这样对文件名进行排序就可以自动对齐)

train_mask = sorted(glob.glob('/kaggle/input/image-xy/Train_Label/*.jpg'))
train_image = sorted(glob.glob('/kaggle/input/image-xy/Train_image/*.jpg'))

第二步:

读取图像,图片大小缩到(256,256,3),标签大小缩到(256,256),读取一张mask和label就将它们加入到mask数组和image数组中。

def data_generation(batch_data_img, batch_data_mask):
    images = []
    masks = []
        # 生成数据
    for data_img, data_mask in zip(batch_data_img, batch_data_mask):
            # x_train数据
        image = cv2.imread(data_img,cv2.IMREAD_COLOR)
        image = cv2.resize(image,(256,256))
         
        image = list(image)
        images.append(image)
            # y_train数据
        mask = cv2.imread(data_mask,cv2.IMREAD_GRAYSCALE)
        mask = cv2.resize(mask, (256,256))
        mask = mask / 255.0
        mask = list(mask)
        masks.append(mask)
    return np.array(images), np.array(masks)

第三步:

增加维度,因为神经网络的输出层为(None,256,256,1),所以我们要将标签的通道数加上。

X,Y=data_generation(train_image,train_mask)
Y = Y[:, :, :, np.newaxis] 

查看结果,符合预期

二、模型搭建

模型的搭建在这一节,只不过将其输出通道数改成了1.

纯手工打造编码解码网络-kreas实现

废话不多说,直接上网络架构图

三、模型训练

这里就懒得自定义损失函数了,直接上系统自带的,优化器adam,使用acc作为评估指标。

Batch使用32,计算卡使用p100。

model = En_De()
model.summary()
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.fit(X,Y,batch_size=32,epochs=2)

先训练2轮看看效果。

分割效果图就不看了,应该挺差的,毕竟就2个epochs。

后续将改进损失函数,使用交并比等,L1损失或L2损失试试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/787802.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

S271系列RTU在旅游景区人流监控中的应用案例

S271系列RTU在旅游景区人流监控中的应用案例 随着全球旅游业的迅猛发展,旅游景区的管理者越来越关注如何利用先进的技术手段提升游客体验、优化管理效率以及确保安全。S271系列RTU作为一款先进的无线工业物联网设备,在旅游景区的人流监控中展现出了其独…

PTA - 编写函数计算圆面积

题目描述: 1.要求编写函数getCircleArea(r)计算给定半径r的圆面积,函数返回圆的面积。 2.要求编写函数get_rList(n) 输入n个值放入列表并将列表返回 函数接口定义: getCircleArea(r); get_rList(n); 传入的参数r表示圆的半径&#xff0c…

批量下载手机中APP程序中文件

需求 利用 adb pull 下载手机中app的某目录 adb pull 命令本身不支持直接下载整个目录(文件夹)及其所有子目录和文件作为一个单一的操作。但是,可以通过一些方法来间接实现这一目的。 方法 1. 首先将要下载的目录进行 tar 打包 # 在 And…

2020 ICPC Shanghai Site B. Mine Sweeper II 题解 构造 鸽巢原理

Mine Sweeper II 题目描述 A mine-sweeper map X X X can be expressed as an n m n\times m nm grid. Each cell of the grid is either a mine cell or a non-mine cell. A mine cell has no number on it. Each non-mine cell has a number representing the number of…

Raylib 实现超大地图放大缩小与两种模式瓦片地图刷新

原理: 一种刷新模式: 在宫格内整体刷新,类似九宫格移动到边缘,则九宫格整体平移一个宫格,不过这里是移动一个瓦片像素,实际上就是全屏刷新,这个上限是 笔记本 3060 70帧 100*100个瓦片每帧都…

《赌局的诱惑》-反赌反诈剧情脚本

场景1: 一家普通公司的休息室,有一张桌子,上面摆放着扑克牌和一些现金。墙上挂着一个时钟,显示时间是下午5点。 人物: 张伟:新员工,被同事拉入赌局。 赵刚:资深员工,赌…

UE5.3-基础蓝图类整理一

常用蓝图类整理: 1、获取当前关卡名:Get Current LevelName 2、通过关卡名打开关卡:Open Level(by name) 3、碰撞检测事件:Event ActorBeginOverlap 4、获取当前player:Get Player Pawn 5、判断是否相等&#xff1…

反弹球python小游戏

1.准备图片(可以替换) 2.python Pygame类 class Ls(pygame.sprite.Sprite):def __init__(self,pos):#pos 鼠标点击的位置super().__init__()self.image pygame.image.load(ji.png)self.dx2self.dx r.randint(20,500)self.image pygame.transform.scale(self.image,(self.dx…

昇思25天学习打卡营第21天|LSTM+CRF序列标注

1. 学习内容复盘 概述 序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名…

iis部署前后端分离项目(React前端,Node.js后端)

iis虽然已经有点过时,但不少用户还在用,故总结一下。 1. 安装iis 如果电脑没有自带iis管理器,打开控制面板->程序->启用或关闭Windows功能,勾选iis安装即可 2. 部署前端项目 打开iis,添加网站,物理…

Linux基本命令的使用示例

目录 1实现效果:在downloads目录下创建1个空文件夹empty,创建1个空文件lake.txt,输入任意数据保存后退出 2实现效果:搜索包含关键字"泉眼"的行 3实现效果:重命名文件夹empty为full,复制文件cc…

Anaconda+Pycharm 项目运行保姆级教程(附带视频)

最近很多小白在问如何用anacondapycharm运行一个深度学习项目,进行代码复现呢?于是写下这篇文章希望能浅浅起到一个指导作用。 附视频讲解地址:AnacondaPycharm项目运行实例_哔哩哔哩_bilibili 一、项目运行前的准备(软件安装&…

锅总反驳李彦宏说的“不要卷模型,要卷应用”

李彦宏的观点是大家不要卷模型,要卷应用,但我认为这种看法是荒谬的。以下是24条反驳李彦宏观点的论点和论据: 模型的准确性直接决定应用的质量和用户体验: 论据:在自然语言处理、计算机视觉等领域,模型的准…

Java虚拟机面试题汇总

目录 1. JVM的主要组成部分及其作用? 1.1 运行时数据区划分? 1.2 哪些区域可能会发生OOM? 1.3 堆和栈的区别? 1.4 内存模型中的happen-before是什么? 2. HotSpot虚拟机对象创建流程? 2.1 类加载过程…

kafka 消费者

消费者 消费者。消费者连接到Kafka上并接收消息,进而进行相应的业务逻辑处理。 消费组 消费者负责订阅Kafka中的主题,并且从订阅的主题上拉取消息。 消费组:每个消费者都有一个对应的消费组,每一个分区只能被一个消费组中的一个…

windows JDK11 与JDK1.8自动切换,以及切换后失效的问题

1.windows安装不同环境的jdk 2.切换jdk 3.切换失败 原因:这是因为当我们安装并配置好JDK11之后它会自动生成一个环境变量(此变量我们看不到),此环境变量优先级较高,导致我们在切换回JDK8后系统会先读取到JDK11生成的…

Docker镜像拉取失败/下载缓慢?如何正确的更换Docker镜像源?(含镜像源,亲测有效!)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Docker镜像源 📒📝 为何更换镜像源📝 如何更换Docker镜像源📝 验证镜像源更换成功📝 一些可用的Docker镜像源⚓️ 相关链接 ⚓️📖 介绍 📖 在当今快速迭代的软件开发环境中,Docker以其轻量级、可移植和高效的特…

新浪API系列:支付API打造无缝支付体验,畅享便利生活(3)

在当今数字化时代,支付功能已经成为各类应用和平台的必备要素之一。作为开发者,要构建出安全、便捷的支付解决方案,新浪支付API是你不可或缺的利器。新浪支付API提供了全面而强大的接口和功能,帮助开发者轻松实现在线支付的集成和…

【嵌入式DIY实例-ESP8266篇】-LCD ST7735显示BME280传感器数据

LCD ST7735显示BME280传感器数据 文章目录 LCD ST7735显示BME280传感器数据1、硬件准备与接线2、代码实现本文中将介绍如何使用 ESP8266 NodeMCU 板(ESP12-E 模块)和 BME280 气压、温度和湿度传感器构建气象站。 NodeMCU 微控制器 (ESP8266EX) 从 BME280 传感器读取温度、湿度…

使用微pe装系统

本文仅作为记录,不作为教程。 今天心血来潮想下点游戏玩玩,一看之前分的200gc盘已经红了,再加上大学之后这个笔记本已经用得很少了,于是打算重装电脑。 参考: 微PE辅助安装_哔哩哔哩_bilibil… 1.下载微pe和win10系统到U盘 我这…