【图像分类】基于卷积神经网络和主动学习的高光谱图像分类(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

深度神经网络最近已广泛应用于高光谱图像(HSI)分类。然而,它的成功在很大程度上归功于许多标记样品,这些样品的采集需要花费大量的时间和金钱。为了在降低标注成本的同时提高分类性能,本文提出了一种用于HSI分类的主动深度学习方法,该方法将主动学习和深度学习集成到一个统一的框架中。首先,我们训练一个具有有限数量的标记像素的卷积神经网络(CNN)。接下来,我们主动从候选池中选择信息量最大的像素进行标记。然后,使用通过合并新标记的像素构建的新训练集对CNN进行微调。此步骤与上一步一起迭代执行。最后,利用马尔可夫随机场(MRF)来增强类标签平滑度,以进一步提高分类性能。与其他最先进的传统和基于深度学习的HSI分类方法相比,我们提出的方法在三个基准HSI数据集上实现了更好的性能,标记样本明显更少。

原文摘要:

Abstract— Deep neural network has been extensively applied to hyperspectral image (HSI) classification recently. However, its success is greatly attributed to numerous labeled samples, whose acquisition costs a large amount of time and money. In order to improve the classification performance while reducing the labeling cost, this article presents an active deep learning approach for HSI classification, which integrates both active learning and deep learning into a unified framework. First, we train a convolutional neural network (CNN) with a limited number of labeled pixels. Next, we actively select the most informative pixels from the candidate pool for labeling. Then, the CNN is fine-tuned with the new training set constructed by incorporating the newly labeled pixels. This step together with the previous step is iteratively conducted. Finally, Markov random field (MRF) is utilized to enforce class label smoothness to further boost the classification performance. Compared with the other state-of-the-art traditional and deep learning-based HSI classification methods, our proposed approach achieves better performance on three benchmark HSI data sets with significantly fewer labeled samples. Index Terms— Active learning (AL), convolutional neural network (CNN), deep learning, hyperspectral image (HSI) classification, Markov random field (MRF).

📚2 运行结果

部分代码:

%% Parameters for data
data.NameFolder = {'IndianPines', 'PaviaU', 'PaviaCenter'};
data.NameMat = {'GT.mat', 'Feature.mat'};
data.SizeOri = {[145, 145, 220], [610, 340, 103], [400, 300, 102]};
data.SizeWin = 8;
data.NumClass = {16, 9, 8};
data.IndBand = {[10, 80, 200], [12, 67, 98], [10, 60, 90]}; % to generate false RGB, which should be less contaminated bands
%data.flagPCA = true;
%data.ReducedDim = 10;

% Three datasets:
% data.flagSet = 1, Indian Pines; 
%              = 2, Pavia University;
%              = 3, Pavia Center.
data.flagSet = 1;

data.NameFolder = data.NameFolder{data.flagSet};
data.SizeOri = data.SizeOri{data.flagSet};
data.NumClass = data.NumClass{data.flagSet};
data.IndBand = data.IndBand{data.flagSet};

%% Parameters for algorithm
alg.SampleSty = 'Rd'; % out of {'Rd', 'Classwise'}
alg.CountSty = 'Num'; % out of {'Num', 'Ratio'}
alg.NumTrn1st = {250, 107, 58};
alg.NumTrn1st = alg.NumTrn1st{data.flagSet};
% if alg.CountSty == 'Ratio'
%alg.RatioTrn1st = {0.02, 0.0025, 0.0025};
%alg.RatioTrn1st = alg.RatioTrn1st{data.flagSet};
alg.CrossVal = 0.05;
alg.NumAlAugPerIte = {[250, 150, 100, 50], [107, 107, 107], [26, 20]}; % The training samples added in each iteration keeps the same ratio with the training sample number of the first iteration
alg.NumAlAugPerIte = alg.NumAlAugPerIte{data.flagSet};
alg.NumIter = length(alg.NumAlAugPerIte)+1;
alg.AlStra = 'BvSB'; % out of {'BvSB', 'RS', 'EP'};

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1] Xiangyong Cao, Jing Yao, Zongben Xu, Deyu Meng. Hyperspectral Image Classification with Convolutional Neural Network and Active Learning. IEEE Transactions on Geoscience and Remote Sensing, 2020. 

[2] H. Bi, F. Xu, Z. Wei, Y. Xue, and Z. Xu, An active deep learning approach for minimally supervised polsar image classification. IEEE Transactions on Geoscience and Remote Sensing, 2019.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/78699.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Genoss GPT简介:使用 Genoss 模型网关实现多个LLM模型的快速切换与集成

一、前言 生成式人工智能领域的发展继续加速,大型语言模型 (LLM) 的用途范围不断扩大。这些用途跨越不同的领域,包括个人助理、文档检索以及图像和文本生成。ChatGPT 等突破性应用程序为公司进入该领域并开始使用这项技术进行构建铺平了道路。 大公司正…

HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制ForEach循环渲染

ForEach基于数组类型数据执行循环渲染。说明,从API version 9开始,该接口支持在ArkTS卡片中使用。 一、接口描述 ForEach(arr: any[], itemGenerator: (item: any, index?: number) > void,keyGenerator?: (item: any, index?: number) > stri…

做一个超简单的Python运行

作为一名专业的爬虫代理产品供应商,我知道很多人对Python爬虫有兴趣,但可能不知道该从何处入手。今天,我就来分享一个超简单的Python爬虫入门教程,希望能帮助到你们!快点准备起来,让我们开始吧!…

【数据结构】链表常见题目

文章目录 链表合并两个有序链表反转链表复制带随机指针的链表环形链表环形链表II相交链表移除链表元素链表中倒数第k个节点链表分割链表的回文结构链表的中间节点旋转链表链表排序链表求和 (逆序求)链表求和II (正序求)重排链表奇偶链表反转链表II <==> 链表内指定区间反…

【学习日记】【FreeRTOS】任务调度时如何考虑任务优先级——任务的自动切换

写在前面 本文开始为 RTOS 加入考虑任务优先级的自动调度算法&#xff0c;代码大部分参考野火。 本文主要是一篇学习笔记&#xff0c;加入了笔者自己对野火代码的梳理和理解。 一、基本思路 首先我们要知道&#xff0c;在 RTOS 中&#xff0c;优先级越高、越需要被先执行的的…

leetcode 917.仅仅反转字母

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;仅仅反转字母 ps&#xff1a; 这道题思路很简单&#xff0c;只需要一个下标在前一个下标在后&#xff0c;分别找是字母的字符&#xff0c;找到之后交换即可。 代码&#xff1a; class Solution { public:bool isAlpha …

【数据结构OJ题】环形链表II

原题链接&#xff1a;https://leetcode.cn/problems/linked-list-cycle-ii/description/ 1. 题目描述 2. 思路分析 如果链表存在环&#xff0c;则fast和slow会在环内相遇&#xff0c;定义相遇点到入口点的距离为X&#xff0c;定义环的长度为C&#xff0c;定义头到入口的距离为…

第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

第三章&#xff0c;矩阵&#xff0c;07-用初等变换求逆矩阵、矩阵的LU分解 一个基本的方法求 A − 1 B A^{-1}B A−1BLU分解例1&#xff0c;求矩阵A的LU分解&#xff1a;例12&#xff0c;LU分解解线性方程组&#xff1a; 玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记&a…

如何将阿里云WiredTiger引擎的MongoDB物理备份文件恢复至自建数据库

数据库操作一直是一个比较敏感的话题&#xff0c;动不动“删库跑路”&#xff0c;可见数据库操作对于一个项目而言是非常重要的&#xff0c;我们有时候会因为一个游戏的严重bug或者运营故障要回档数据库&#xff0c;而你们刚好使用的是阿里云的Mongodb&#xff0c;那么这篇文章…

【FAQ】安防监控视频云存储平台EasyNVR频繁离线的原因排查与解决

有用户反馈&#xff0c;在使用EasyNVR时会出现通道频繁离线的情况。针对该反馈我们立即进行了排查。 安防视频监控汇聚EasyNVR视频集中存储平台&#xff0c;是基于RTSP/Onvif协议的安防视频平台&#xff0c;可支持将接入的视频流进行全平台、全终端分发&#xff0c;分发的视频流…

无公网IP,公网SSH远程访问家中的树莓派教程

文章目录 前言 如何通过 SSH 连接到树莓派步骤1. 在 Raspberry Pi 上启用 SSH步骤2. 查找树莓派的 IP 地址步骤3. SSH 到你的树莓派步骤 4. 在任何地点访问家中的树莓派4.1 安装 Cpolar内网穿透4.2 cpolar进行token认证4.3 配置cpolar服务开机自启动4.4 查看映射到公网的隧道地…

走出象牙塔:李郓梁的区块链实践之路丨对话MVP

如何从科研走向实践&#xff1f;李郓梁在社区找到了答案。 作为西安工业大学的硕士研究生&#xff0c;李郓梁从学校的实验室接触区块链技术。通过研读大量论文&#xff0c;李郓梁为区块链多中心化、不可篡改等前沿理论深深着迷&#xff0c;并选择将区块链作为主要研究方向&…

7. 实现 API 自动生成

目录 1. pom.xml中引用依赖 2. 引入相关的依赖 3. 编写配置类 4. application.yml 中添加配置 5. API 常用注解 6. 访问 API 列表 7. API 导入 Postman 使用 Springfox Swagger生成 API&#xff0c;并导入 Postman&#xff0c;完成API单元测试。 Swagger 简介&#xff1a;Swag…

cs231n assignment 3 Q2 Image Captioning with Vanilla RNNs

文章目录 嫌啰嗦直接看代码Q2 Image Captioning with Vanilla RNNs一个给的工具代码里的bug问题展示问题解决思路解决办法 rnn_step_forward题面解析代码输出 rnn_step_backward题面解析代码输出 rnn_forward题面解析代码输出 rnn_backward题面解析代码输出 word_embedding_for…

《python编程基础及应用》,python编程基础及应用pdf

大家好&#xff0c;小编为大家解答python编程基础课后答案上海交通大学出版社周志化的问题。很多人还不知道python编程基础及应用课后答案高等教育出版社&#xff0c;现在让我们一起来看看吧&#xff01; 单项选择题 第一章python语法基础 1. Python 3.x 版本的保留字总数是C A…

四层和七层负载均衡的区别

一、四层负载均衡 四层就是ISO参考模型中的第四层。四层负载均衡器也称为四层交换机&#xff0c;它主要时通过分析IP层和TCP/UDP层的流量实现的基于“IP端口”的负载均衡。常见的基于四层的负载均衡器有LVS、F5等。 以常见的TCP应用为例&#xff0c;负载均衡器在接收到第一个来…

django实现文件上传

在django中实现文件上传有三种方法可以实现&#xff1a; 自己手动写使用Form组件使用ModelForm组件 其中使用ModelForm组件实现是最简单的。 1、自己手写 先写一个上传的页面 upload_file.html enctype"multipart/form-data 一定要加这个&#xff0c;不然只会上传文件名…

一个模型解决所有类别的异常检测

文章目录 一、内容说明二、相关链接三、概述四、摘要1、现有方法存在的问题2、方案3、效果 五、作者的实验六、如何训练自己的数据1、数据准备2、修改配置文件3、代码优化修改4、模型训练与测试 七、结束 一、内容说明 在我接触的缺陷检测项目中&#xff0c;检测缺陷有两种方法…

Vue2-配置脚手架、分析脚手架、render函数、ref属性、props配置项、mixin配置项、scoped样式、插件

&#x1f954;:总有一段付出了没有回报的日子 是在扎根 更多Vue知识请点击——Vue.js VUE2-Day6 配置脚手架脚手架结构render函数vue.js与vue.runtime.xxx.js的区别引入render函数为什么要引入残缺的vue呢&#xff1f; 脚手架默认配置ref属性props配置项传递数据接收数据注意点…

【CI/CD】Rancher K8s

Rancher & K8s Rancher 和 K8s 的关系是什么&#xff1f;K8s 全称为 Kubernetes&#xff0c;它是一个开源的&#xff0c;用于管理云平台中多个主机上的容器化的应用。而 Rancher 是一个完全开源的企业级多集群 Kubernetes 管理平台&#xff0c;实现了 Kubernetes 集群在混合…