昇思MindSpore学习笔记6-02计算机视觉--ResNet50迁移学习

摘要:

        记录MindSpore AI框架使用ResNet50迁移学习方法对ImageNet狼狗图片分类的过程、步骤。包括环境准备、下载数据集、数据集加载、构建模型、固定特征训练、训练评估和模型预测等。

一、

迁移学习的方法

        在大数据集上训练得到预训练模型

        初始化网络权重参数

        固定特征提取器

        应用于特定任务

ImageNet数据集中的狼和狗图像进行分类。

二、环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 

三、数据准备

1.下载数据集

ImageNet

        狼与狗每个分类

        120张训练图像

        30张验证图像

download接口

        下载数据集

        自动解压到当前目录下

from download import download
​
dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"
​
download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

输出:

Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip (11.3 MB)

file_sizes: 100%|███████████████████████████| 11.9M/11.9M [00:00<00:00, 140MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./datasets-Canidae
'./datasets-Canidae'

数据集目录结构:

datasets-Canidae/data/
└── Canidae
    ├── train
    │   ├── dogs
    │   └── wolves
    └── val
        ├── dogs
        └── wolves

2.加载数据集

mindspore.dataset.ImageFolderDataset接口

        加载数据集

        图像增强操作。

定义执行过程的输入参数:

batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
​
# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"
​
# 创建训练数据集
​
def create_dataset_canidae(dataset_path, usage):
    """数据加载"""
    data_set = ds.ImageFolderDataset(dataset_path,
                                     num_parallel_workers=workers,
                                     shuffle=True,)
​
    # 数据增强操作
    mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
    std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
    scale = 32
​
    if usage == "train":
        # Define map operations for training dataset
        trans = [
            vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
            vision.RandomHorizontalFlip(prob=0.5),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]
    else:
        # Define map operations for inference dataset
        trans = [
            vision.Decode(),
            vision.Resize(image_size + scale),
            vision.CenterCrop(image_size),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]
​
    # 数据映射操作
    data_set = data_set.map(
        operations=trans,
        input_columns='image',
        num_parallel_workers=workers)
​
​
    # 批量操作
    data_set = data_set.batch(batch_size)
​
    return data_set
​
​
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()
​
dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

3.数据集可视化

mindspore.dataset.ImageFolderDataset接口

        加载训练数据集

        返回值为字典

create_dict_iterator 接口

        创建数据迭代器

        next 迭代访问数据集

        batch_size 设为18

                next一次获取图像及标签数据的数量

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]
​
print("Tensor of image", images.shape)
print("Labels:", labels)

输出:

Tensor of image (18, 3, 224, 224)
Labels: [0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1]

显示图像及标签数据

标题为图像对应的label名称

import matplotlib.pyplot as plt
import numpy as np
​
# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}
​
plt.figure(figsize=(5, 5))
for i in range(4):
    # 获取图像及其对应的label
    data_image = images[i].asnumpy()
    data_label = labels[i]
    # 处理图像供展示使用
    data_image = np.transpose(data_image, (1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    data_image = std * data_image + mean
    data_image = np.clip(data_image, 0, 1)
    # 显示图像
    plt.subplot(2, 2, i+1)
    plt.imshow(data_image)
    plt.title(class_name[int(labels[i].asnumpy())])
    plt.axis("off")
​
plt.show()

输出:

四、训练模型

训练模型ResNet50

        Pretrained=True

        下载ResNet50的预训练模型

        加载权重参数

1.构建Resnet50网络

from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normal
​
​
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支
​
        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)
​
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
​
        identity = x  # shortscuts分支
​
        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
​
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支
​
​
    if stride != 1 or last_out_channel != channel * block.expansion:
​
        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])
​
    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))
​
    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):
​
        layers.append(block(in_channel, channel))
​
    return nn.SequentialCell(layers)

from mindspore import load_checkpoint, load_param_into_net
​
class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()
​
        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义,
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)
​
    def construct(self, x):
​
        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)
​
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
​
        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)
​
        return x
​
def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)
​
    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrianed_ckpt, replace=True)
        param_dict = load_checkpoint(pretrianed_ckpt)
        load_param_into_net(model, param_dict)
​
    return model
​
def resnet50(num_classes: int = 1000, pretrained: bool = False):
    "ResNet50模型"
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

2.固定特征进行训练

训练固定特征

        冻结除最后一层之外的所有网络层

        设置 requires_grad == False 冻结参数

        不在反向传播中计算梯度

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
​
net_work = resnet50(pretrained=True)
​
# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head
​
# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool
​
# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():
    if param.name not in ["fc.weight", "fc.bias"]:
        param.requires_grad = False
​
# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
​
​
def forward_fn(inputs, targets):
    logits = net_work(inputs)
    loss = loss_fn(logits, targets)
​
    return loss
​
grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)
​
def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss
​
# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt (97.7 MB)

file_sizes: 100%|█████████████████████████████| 102M/102M [00:00<00:00, 115MB/s]
Successfully downloaded file to ./LoadPretrainedModel/resnet50_224_new.ckpt

五、训练和评估

保存评估精度最高的ckpt文件于当前路径:

        ./BestCheckpoint/resnet50-best-freezing-param.ckpt

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()
​
dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()
​
num_epochs = 5
​
# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"
import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
# 开始循环训练
print("Start Training Loop ...")
​
best_acc = 0
​
for epoch in range(num_epochs):
    losses = []
    net_work.set_train()
​
    epoch_start = time.time()
​
    # 为每轮训练读入数据
    for i, (images, labels) in enumerate(data_loader_train):
        labels = labels.astype(ms.int32)
        loss = train_step(images, labels)
        losses.append(loss)
​
    # 每个epoch结束后,验证准确率
​
    acc = model1.eval(dataset_val)['Accuracy']
​
    epoch_end = time.time()
    epoch_seconds = (epoch_end - epoch_start) * 1000
    step_seconds = epoch_seconds/step_size_train
​
    print("-" * 20)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, sum(losses)/len(losses), acc
    ))
    print("epoch time: %5.3f ms, per step time: %5.3f ms" % (
        epoch_seconds, step_seconds
    ))
​
    if acc > best_acc:
        best_acc = acc
        if not os.path.exists(best_ckpt_dir):
            os.mkdir(best_ckpt_dir)
        ms.save_checkpoint(net_work, best_ckpt_path)
​
print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

输出:

Start Training Loop ...
--------------------
Epoch: [  1/  5], Average Train Loss: [0.641], Accuracy: [0.850]
epoch time: 125652.211 ms, per step time: 8975.158 ms
--------------------
Epoch: [  2/  5], Average Train Loss: [0.560], Accuracy: [0.983]
epoch time: 1105.189 ms, per step time: 78.942 ms
--------------------
Epoch: [  3/  5], Average Train Loss: [0.507], Accuracy: [0.983]
epoch time: 838.326 ms, per step time: 59.880 ms
--------------------
Epoch: [  4/  5], Average Train Loss: [0.451], Accuracy: [1.000]
epoch time: 927.405 ms, per step time: 66.243 ms
--------------------
Epoch: [  5/  5], Average Train Loss: [0.377], Accuracy: [0.983]
epoch time: 950.847 ms, per step time: 67.918 ms
================================================================================
End of validation the best Accuracy is:  1.000, save the best ckpt file in ./BestCheckpoint/resnet50-best-freezing-param.ckpt

六、可视化模型预测

使用固定特征得到的best.ckpt文件

预测验证集的狼和狗图像数据

预测字体为蓝色         预测正确

预测字体为红色         预测错误

import matplotlib.pyplot as plt
import mindspore as ms
​
def visualize_model(best_ckpt_path, val_ds):
    net = resnet50()
    # 全连接层输入层的大小
    in_channels = net.fc.in_channels
    # 输出通道数大小为狼狗分类数2
    head = nn.Dense(in_channels, 2)
    # 重置全连接层
    net.fc = head
    # 平均池化层kernel size为7
    avg_pool = nn.AvgPool2d(kernel_size=7)
    # 重置平均池化层
    net.avg_pool = avg_pool
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    model = train.Model(net)
    # 加载验证集的数据进行验证
    data = next(val_ds.create_dict_iterator())
    images = data["image"].asnumpy()
    labels = data["label"].asnumpy()
    class_name = {0: "dogs", 1: "wolves"}
    # 预测图像类别
    output = model.predict(ms.Tensor(data['image']))
    pred = np.argmax(output.asnumpy(), axis=1)
​
    # 显示图像及图像的预测值
    plt.figure(figsize=(5, 5))
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels[i] else 'red'
        plt.title('predict:{}'.format(class_name[pred[i]]), color=color)
        picture_show = np.transpose(images[i], (1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')
​
    plt.show()
visualize_model(best_ckpt_path, dataset_val)

输出:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/785804.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

突发!马斯克3140亿参数Grok开源!Grok原理大公开!

BIG NEWS: 全球最大开源大模型&#xff01;马斯克Grok-1参数量3410亿&#xff0c;正式开源!!! 说到做到&#xff0c;马斯克xAI的Grok&#xff0c;果然如期开源了&#xff01; 就在刚刚&#xff0c;马斯克的AI创企xAI正式发布了此前备受期待大模型Grok-1&#xff0c;其参数量达…

【Linux】文件和目录管理命令——ls,cp,rm,mv

1.文件与目录的查看&#xff1a;Is ls [-aAdfFhilnrRst] 文件名或目录名称ls [ --color{never&#xff0c;auto&#xff0c;always} ]文件名或目录名称ls [ --full-time ]文件名或目录名称 选项与参数&#xff1a; -a&#xff1a;全部的文件&#xff0c;连同隐藏文件&am…

高质量PPT模板素材,免费下载

在制作演示文稿时&#xff0c;选择合适的PPT模板至关重要。为了帮助您轻松找到免费的PPT模板资源&#xff0c;这里分享了6个优秀的网站。这些资源库提供了各种风格和主题的PPT模板&#xff0c;让您的演示内容更生动、更吸引人。 1、baotuppt ppt模板下载-ppt背景 一个专业分享…

如何使用HTML和JavaScript读取文件夹中的所有图片并显示RGB范围

如何使用HTML和JavaScript读取文件夹中的所有图片并显示RGB范围 在这篇博客中&#xff0c;我将介绍如何使用HTML和JavaScript读取文件夹中的所有图片&#xff0c;并显示这些图片以及它们的RGB范围。这个项目使用现代浏览器提供的<input type"file" webkitdirecto…

探展2024世界人工智能大会之合合信息扫描黑科技~

文章目录 ⭐️ 前言⭐️ AIGC古籍修复文化遗产焕新⭐️ 高效的文档图像处理解决方案⭐️ AIGC扫描黑科技一键全搞定⭐️ 行业级的大模型加速器⭐️ 结语 ⭐️ 前言 大家好&#xff0c;我是 哈哥&#xff08;哈哥撩编程&#xff09; &#xff0c;这次非常荣幸受邀作为专业观众参…

深入解析工信认证分类:价值及重要性

随着科技的发展和全球化的推进&#xff0c;企业对于产品和服务的质量、安全、环保等方面的要求日益提高。在这样的背景下&#xff0c;工信认证作为一种权威的第三方认证服务&#xff0c;受到了众多企业的青睐。 一、工信认证的类型 工信认证涵盖了多个领域&#xff0c;包括但不…

温州海经区管委会主任、乐清市委书记徐建兵带队莅临麒麟信安调研

7月8日上午&#xff0c;温州海经区管委会主任、乐清市委书记徐建兵&#xff0c;乐清市委常委、副市长叶序锋&#xff0c;乐清市委办主任郑志坚一行莅临麒麟信安调研&#xff0c;乐清市投资促进服务中心及湖南省浙江总商会相关人员陪同参加。麒麟信安董事长杨涛、总裁刘文清热情…

百度Feed业务数仓建模实践

作者 | XY 导读 Feed&#xff0c;即个性化推荐信息流&#xff0c;是百度 App 上承载各种类型内容&#xff08;如文章、视频、图集等&#xff09;的重要 topic。本文概要讲述了随着业务发展&#xff0c;移动生态数据研发部在 Feed 数据宽表建模上的演进过程以及一些实践&#xf…

自动驾驶SLAM又一开源巅峰之作!深挖时间一致性,精准构建超清地图

论文标题&#xff1a; DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction 论文作者&#xff1a; Siyu Li, Jiacheng Lin, Hao Shi, Jiaming Zhang, Song Wang, You Yao, Zhiyong Li, Kailun Yang 导读&#xff1a; 本文介绍了一种用于自动…

【触想智能】工业一体机在工程机械车辆上的应用分析

随着工程机械行业的不断发展和自动化程度的提高&#xff0c;工业一体机在工程机械车辆上的应用越来越广泛。工业一体机是集电脑、显示器、触摸屏、通讯、测量、控制等多种功能于一体的高度集成化的工业控制系统&#xff0c;在工程机械车辆上的应用可以为用户提供更为便捷、高效…

Android EditText+ListPopupWindow实现可编辑的下拉列表

Android EditTextListPopupWindow实现可编辑的下拉列表 &#x1f4d6;1. 可编辑的下拉列表✅步骤一&#xff1a;准备视图✅步骤二&#xff1a;封装显示方法✅步骤三&#xff1a;获取视图并监听 &#x1f4d6;2. 扩展上下箭头✅步骤一&#xff1a;准备上下箭头icon图标✅步骤二&…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-第十三章 Linux连接档

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

js碰撞检测

碰撞检测 碰撞检测&#xff08;边界检测&#xff09;在前端游戏&#xff0c;以及涉及拖拽交互的场景应用十分广泛。 碰撞&#xff0c;顾名思义&#xff0c;就是两个物体碰撞在了一起&#xff0c;眼睛是可以直观的观察到碰撞的发生。但对于前端实现&#xff0c;如何让 JavaScrip…

使用Simulink基于模型设计(二):系统定义和布局

Simulink模型的顶层系统布局是许多工程团队可以使用的公共环境&#xff0c;是基于模型的设计范式&#xff1a;分析、设计、检验和实现。您可以通过确定模型的结构和各个组件来定义顶层系统。然后&#xff0c;您可以将模型按照层次结构进行组织&#xff0c;分别与系统的各个组件…

群晖NAS配置WebDav服务结合内网穿透实现跨平台云同步思源笔记

文章目录 前言1. 开启群晖WebDav 服务2. 本地局域网IP同步测试3. 群晖安装Cpolar4. 配置远程同步地址5. 笔记远程同步测试6. 固定公网地址7. 配置固定远程同步地址 前言 本教程主要分享如何将思源笔记、cpolar内网穿透和群晖WebDav三者相结合&#xff0c;实现思源笔记的云同步…

华为手机照片视频恢复,2种有效方法,让你的回忆重现

“曾经沧海难为水&#xff0c;除却巫山不是云。”这话放在我们手机里的照片视频上也是相当贴切。那些一不小心删除或丢失的珍贵回忆&#xff0c;就像巫山云雨般飘渺难寻&#xff0c;让人心痛不已。照片视频恢复究竟该如何解决呢&#xff1f;今天我就为你带来2种手机照片视频恢复…

C++--继承(下)

目录 5.继承与友元 6.继承与静态成员 7.复杂的菱形继承与菱形虚拟继承 8.继承与组合 5.继承与友元 简单来说就是父类的友元函数子类继承不了&#xff0c;所以父类的友元函数不能访问子类的私有和保护成员 class Person { public:friend void Display(const Person&…

DeepMind的JEST技术:AI训练速度提升13倍,能效增强10倍,引领绿色AI革命

谷歌旗下的人工智能研究实验室DeepMind发布了一项关于人工智能模型训练的新研究成果&#xff0c;声称其新提出的“联合示例选择”&#xff08;Joint Example Selection&#xff0c;简称JEST&#xff09;技术能够极大地提高训练速度和能源效率&#xff0c;相比其他方法&#xff…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-第十一章 Linux 帮助手册

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…