ElasticSearch第一天

学习目标:

  1. 能够理解ElasticSearch的作用
  2. 能够安装ElasticSearch服务
  3. 能够理解ElasticSearch的相关概念
  4. 能够使用Postman发送Restful请求操作ElasticSearch
  5. 能够理解分词器的作用
  6. 能够使用ElasticSearch集成IK分词器
  7. 能够完成es集群搭建

第一章 ElasticSearch简介

1.1 什么是ElasticSearch

Elasticsearch,简称为es, es是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。es也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

1.2 ElasticSearch的使用案例
  • 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”
  • 维基百科:启动以elasticsearch为基础的核心搜索架构
  • SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”
  • 百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部20多个业务线(包括casio、云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大100台机器,200个ES节点,每天导入30TB+数据
  • 新浪使用ES 分析处理32亿条实时日志
  • 阿里使用ES 构建自己的日志采集和分析体系
1.3 ElasticSearch对比Solr
  • Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;
  • Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式;
  • Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;
  • Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch

第二章 ElasticSearch安装与启动

2.1 下载ES压缩包

ElasticSearch分为Linux和Window版本,基于我们主要学习的是ElasticSearch的Java客户端的使用,所以我们课程中使用的是安装较为简便的Window版本,项目上线后,公司的运维人员会安装Linux版的ES供我们连接使用。

ElasticSearch的官方地址:  https://www.elastic.co/products/elasticsearch

2.2 安装ES服务

Window版的ElasticSearch的安装很简单,类似Window版的Tomcat,解压开即安装完毕,解压后的ElasticSearch的目录结构如下:

修改elasticsearch配置文件:config/elasticsearch.yml,增加以下两句命令:

http.cors.enabled: true
http.cors.allow-origin: "*"

此步为允许elasticsearch跨越访问,如果不安装后面的elasticsearch-head是可以不修改,直接启动。

2.3 启动ES服务

点击ElasticSearch下的bin目录下的elasticsearch.bat启动,控制台显示的日志信息如下:

注意:9300是tcp通讯端口,集群间和TCPClient都执行该端口,9200是http协议的RESTful接口 。

通过浏览器访问ElasticSearch服务器,看到如下返回的json信息,代表服务启动成功:

注意:ElasticSearch是使用java开发的,且本版本的es需要的jdk版本要是1.8以上,所以安装ElasticSearch之前保证JDK1.8+安装完毕,并正确的配置好JDK环境变量,否则启动ElasticSearch失败。

2.4 安装ES的图形化界面插件

ElasticSearch不同于Solr自带图形化界面,我们可以通过安装ElasticSearch的head插件,完成图形化界面的效果,完成索引数据的查看。安装插件的方式有两种,在线安装和本地安装。本文档采用本地安装方式进行head插件的安装。elasticsearch-5-*以上版本安装head需要安装node和grunt

1)下载head插件: https://github.com/mobz/elasticsearch-head

在资料中已经提供了elasticsearch-head-master插件压缩包:

2)将elasticsearch-head-master压缩包解压到任意目录,但是要和elasticsearch的安装目录区别开

3)下载nodejs: https://nodejs.org/en/download/

在资料中已经提供了nodejs安装程序:

双击安装程序。

安装完毕,可以通过cmd控制台输入:node -v 查看版本号

5)将grunt安装为全局命令 ,Grunt是基于Node.js的项目构建工具

在cmd控制台中输入如下执行命令:

npm install -g grunt-cli

执行结果如下图:

6)进入elasticsearch-head-master目录启动head,在命令提示符下输入命令:

>npm install
>grunt server

7)打开浏览器,输入  http://localhost:9100,看到如下页面:

如果不能成功连接到es服务,需要修改ElasticSearch的config目录下的配置文件:config/elasticsearch.yml,增加以下两句命令:

http.cors.enabled: true
http.cors.allow-origin: "*"

然后重新启动ElasticSearch服务。

第三章 ElasticSearch相关概念(术语)

3.1 概述

Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document)。然而它不仅仅是存储,还会索引(index)每个文档的内容使之可以被搜索。在Elasticsearch中,你可以对文档(而非成行成列的数据)进行索引、搜索、排序、过滤。Elasticsearch比传统关系型数据库如下:

Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices   -> Types  -> Documents -> Fields
3.2 Elasticsearch核心概念
3.2.1 索引 index

一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母的),并且当我们要对对应于这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。

3.2.2 类型 type

在一个索引中,你可以定义一种或多种类型。一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具有一组共同字段的文档定义一个类型。比如说,我们假设你运营一个博客平台并且将你所有的数据存储到一个索引中。在这个索引中,你可以为用户数据定义一个类型,为博客数据定义另一个类型,当然,也可以为评论数据定义另一个类型。

3.2.3 字段Field

相当于是数据表的字段,对文档数据根据不同属性进行的分类标识

3.2.4 映射 mapping

mapping是处理数据的方式和规则方面做一些限制,如某个字段的数据类型、默认值、分析器、是否被索引等等,这些都是映射里面可以设置的,其它就是处理es里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。

3.2.5 文档 document

一个文档是一个可被索引的基础信息单元。比如,你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以JSON(Javascript Object Notation)格式来表示,而JSON是一个到处存在的互联网数据交互格式。

在一个index/type里面,你可以存储任意多的文档。注意,尽管一个文档,物理上存在于一个索引之中,文档必须被索引/赋予一个索引的type。

3.2.6 接近实时 NRT

Elasticsearch是一个接近实时的搜索平台。这意味着,从索引一个文档直到这个文档能够被搜索到有一个轻微的延迟(通常是1秒以内)

3.2.7 集群 cluster

一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群

3.2.8 节点 node

一个节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能。和集群类似,一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。

在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

3.2.9 分片和副本 shards&replicas

一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。分片很重要,主要有两方面的原因:
1)允许你水平分割/扩展你的内容容量。
2)允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量。

至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。

复制之所以重要,有两个主要原因: 在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行。总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。

默认情况下,Elasticsearch中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。

第四章 ElasticSearch的客户端操作

实际开发中,主要有三种方式可以作为elasticsearch服务的客户端:

第一种,elasticsearch-head插件
第二种,使用elasticsearch提供的Restful接口直接访问
第三种,使用elasticsearch提供的API进行访问

4.1 安装Postman工具

Postman中文版是postman这款强大网页调试工具的windows客户端,提供功能强大的Web API & HTTP 请求调试。软件功能非常强大,界面简洁明晰、操作方便快捷,设计得很人性化。Postman中文版能够发送任何类型的HTTP 请求 (GET, HEAD, POST, PUT…),且可以附带任何数量的参数。

4.1 下载Postman工具

Postman官网: https://www.getpostman.com

课程资料中已经提供了安装包

4.2 注册Postman工具

4.2 使用Postman工具进行Restful接口访问

4.2.1 ElasticSearch的接口语法
 

curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d '<BODY>'

4.2.2 创建索引index和映射mapping

请求url:

PUT	 localhost:9200/blog1
{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"
                }
            }
        }
    }
}

postman截图:

elasticsearch-head查看:

4.2.3 创建索引后设置Mapping

我们可以在创建索引时设置mapping信息,当然也可以先创建索引然后再设置mapping。

在上一个步骤中不设置maping信息,直接使用put方法创建一个索引,然后设置mapping信息。

PUT     http://localhost:9200/blog2

请求的url:

POST	http://127.0.0.1:9200/blog2/hello/_mapping

请求体:

{
    "hello": {
            "properties": {
                "id":{
                	"type": "long",
                    "index":"not_analyzed"
                },
                "title":{
                	"type":"text",
                	"store":true,
                	"index":true,
                	"analyzer":"standard"
                },
                "content":{
                	"type":"text",
                	"store":true,
                	"index":true,
                	"analyzer":"standard"
                }
            }
        }
  }

PostMan截图

4.2.4 删除索引index


请求url:

DELETE localhost:9200/blog2

postman截图:

elasticsearch-head查看:

4.2.5 创建文档document

请求url:

POST localhost:9200/blog1/article/1

请求体:上面article代表着type,后面的1代表着id,所以下面的请求体中可以不用设置id

    {
        "id":1,
        "title":"ElasticSearch是一个基于Lucene的搜索服务器",
        "content":"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
    }

postman截图:

elasticsearch-head查看:

4.2.6 修改文档document

请求url:

POST localhost:9200/blog1/article/1
{
	"id":1,
	"title":"【修改】ElasticSearch是一个基于Lucene的搜索服务器",
	"content":"【修改】它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
}

postman截图:

elasticsearch-head查看:

4.2.7 删除文档document

请求url:

DELETE	localhost:9200/blog1/article/1

postman截图:

elasticsearch-head查看:

4.2.8 查询文档-根据id查询

注意:根据的是es的_id进行查询的,并不是字段id!

请求url:

GET	localhost:9200/blog1/article/1

postman截图:

4.2.9 查询文档-querystring查询

请求url:

POST localhost:9200/blog1/article/_search

请求体:

{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "搜索服务器"
        }
    }
}

postman截图:

注意:

将搜索内容"搜索服务器"修改为"钢索",同样也能搜索到文档,该原因会在下面讲解中得到答案

{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "钢索"
        }
    }
}
4.2.10 查询文档-term查询
 

请求url:

POST	localhost:9200/blog1/article/_search

请求体:

{
    "query": {
        "term": {
            "title": "搜索"
        }
    }
}

postman截图:

第五章 IK 分词器和ElasticSearch集成使用

5.1 上述查询存在问题分析

在进行字符串查询时,我们发现去搜索"搜索服务器"和"钢索"都可以搜索到数据;

而在进行词条查询时,我们搜索"搜索"却没有搜索到数据;

究其原因是ElasticSearch的标准分词器导致的,当我们创建索引时,字段使用的是标准分词器:

{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"	//标准分词器
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"	//标准分词器
                }
            }
        }
    }
}

例如对 “我是程序员” 进行分词

标准分词器分词效果测试:

http://127.0.0.1:9200/_analyze?analyzer=standard&pretty=true&text=我是程序员

分词结果:

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "程",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "序",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    }
  ]
}

而我们需要的分词效果是:我、是、程序、程序员

这样的话就需要对中文支持良好的分析器的支持,支持中文分词的分词器有很多,word分词器、庖丁解牛、盘古分词、Ansj分词等,但我们常用的还是下面要介绍的IK分词器。

5.2 IK分词器简介

IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出 了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为 面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

IK分词器3.0的特性如下:

1)采用了特有的“正向迭代最细粒度切分算法“,具有60万字/秒的高速处理能力。
2)采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。
3)对中英联合支持不是很好,在这方面的处理比较麻烦.需再做一次查询,同时是支持个人词条的优化的词典存储,更小的内存占用。
4)支持用户词典扩展定义。
5)针对Lucene全文检索优化的查询分析器IKQueryParser;采用歧义分析算法优化查询关键字的搜索排列组合,能极大的提高Lucene检索的命中率。

5.3 ElasticSearch集成IK分词器
5.3.1 IK分词器的安装

1)下载地址: https://github.com/medcl/elasticsearch-analysis-ik/releases

课程资料也提供了IK分词器的压缩包:

2)解压,将解压后的elasticsearch文件夹拷贝到elasticsearch-5.6.8\plugins下,并重命名文件夹为ik

3)重新启动ElasticSearch,即可加载IK分词器

5.3.2 IK分词器测试

IK提供了两个分词算法ik_smart 和 ik_max_word

其中 ik_smart 为最少切分,ik_max_word为最细粒度划分

我们分别来试一下

1)最小切分:在浏览器地址栏输入地址

http://127.0.0.1:9200/_analyze?analyzer=ik_smart&pretty=true&text=我是程序员

输出的结果为:

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

2)最细切分:在浏览器地址栏输入地址

http://127.0.0.1:9200/_analyze?analyzer=ik_max_word&pretty=true&text=我是程序员

输出的结果为:

{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 4
    }
  ]
}
5.4 修改索引映射mapping
5.4.1 重建索引

删除原有blog1索引

DELETE		localhost:9200/blog1

创建blog1索引,此时分词器使用ik_max_word

PUT		localhost:9200/blog1
{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"ik_max_word"
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"ik_max_word"
                }
            }
        }
    }
}

创建文档

POST	localhost:9200/blog1/article/1
{
	"id":1,
	"title":"ElasticSearch是一个基于Lucene的搜索服务器",
	"content":"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
}
5.4.2 再次测试queryString查询

请求url:

POST	localhost:9200/blog1/article/_search

请求体:

{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "搜索服务器"
        }
    }
}

postman截图:

将请求体搜索字符串修改为"钢索",再次查询:

{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "钢索"
        }
    }
}

postman截图:

5.4.3 再次测试term测试

term会根据分词进行查询,使用中文分词器后,有’搜索’这个分词,所以查询出来了

请求url:

{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "钢索"
        }
    }
}

postman截图:

5.4.3 再次测试term测试

term会根据分词进行查询,使用中文分词器后,有’搜索’这个分词,所以查询出来了

请求url:

{
    "query": {
        "term": {
            "title": "搜索"
        }
    }
}

postman截图:

第六章 ElasticSearch集群

ES集群是一个 P2P类型(使用 gossip 协议)的分布式系统,除了集群状态管理以外,其他所有的请求都可以发送到集群内任意一台节点上,这个节点可以自己找到需要转发给哪些节点,并且直接跟这些节点通信。所以,从网络架构及服务配置上来说,构建集群所需要的配置极其简单。在 Elasticsearch 2.0 之前,无阻碍的网络下,所有配置了相同 cluster.name 的节点都自动归属到一个集群中。2.0 版本之后,基于安全的考虑避免开发环境过于随便造成的麻烦,从 2.0 版本开始,默认的自动发现方式改为了单播(unicast)方式。配置里提供几台节点的地址,ES 将其视作 gossip router 角色,借以完成集群的发现。由于这只是 ES 内一个很小的功能,所以 gossip router 角色并不需要单独配置,每个 ES 节点都可以担任。所以,采用单播方式的集群,各节点都配置相同的几个节点列表作为 router 即可。

​ 集群中节点数量没有限制,一般大于等于2个节点就可以看做是集群了。一般处于高性能及高可用方面来考虑一般集群中的节点数量都是3个及3个以上。

6.1 集群的相关概念

6.1.1 集群 cluster


一个集群就是由一个或多个节点组织在一起,它们共同持有整个的数据,并一起提供索引和搜索功能。一个集群由一个唯一的名字标识,这个名字默认就是“elasticsearch”。这个名字是重要的,因为一个节点只能通过指定某个集群的名字,来加入这个集群

6.1.2 节点 node


一个节点是集群中的一个服务器,作为集群的一部分,它存储数据,参与集群的索引和搜索功能。和集群类似,一个节点也是由一个名字来标识的,默认情况下,这个名字是一个随机的漫威漫画角色的名字,这个名字会在启动的时候赋予节点。这个名字对于管理工作来说挺重要的,因为在这个管理过程中,你会去确定网络中的哪些服务器对应于Elasticsearch集群中的哪些节点。

一个节点可以通过配置集群名称的方式来加入一个指定的集群。默认情况下,每个节点都会被安排加入到一个叫做“elasticsearch”的集群中,这意味着,如果你在你的网络中启动了若干个节点,并假定它们能够相互发现彼此,它们将会自动地形成并加入到一个叫做“elasticsearch”的集群中。

在一个集群里,只要你想,可以拥有任意多个节点。而且,如果当前你的网络中没有运行任何Elasticsearch节点,这时启动一个节点,会默认创建并加入一个叫做“elasticsearch”的集群。

6.1.3 分片和复制 shards&replicas


一个索引可以存储超出单个结点硬件限制的大量数据。比如,一个具有10亿文档的索引占据1TB的磁盘空间,而任一节点都没有这样大的磁盘空间;或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch提供了将索引划分成多份的能力,这些份就叫做分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。分片很重要,主要有两方面的原因:
1)允许你水平分割/扩展你的内容容量。
2)允许你在分片(潜在地,位于多个节点上)之上进行分布式的、并行的操作,进而提高性能/吞吐量。

至于一个分片怎样分布,它的文档怎样聚合回搜索请求,是完全由Elasticsearch管理的,对于作为用户的你来说,这些都是透明的。

在一个网络/云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片,或者直接叫复制。

复制之所以重要,有两个主要原因: 在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。扩展你的搜索量/吞吐量,因为搜索可以在所有的复制上并行运行。总之,每个索引可以被分成多个分片。一个索引也可以被复制0次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。

默认情况下,Elasticsearch中的每个索引被分片5个主分片和1个复制,这意味着,如果你的集群中至少有两个节点,你的索引将会有5个主分片和另外5个复制分片(1个完全拷贝),这样的话每个索引总共就有10个分片。

6.2 集群的搭建

6.2.1 准备三台elasticsearch服务器

创建elasticsearch-cluster文件夹,在内部复制三个新解压的elasticsearch服务

6.2.2 修改每台服务器配置

修改elasticsearch-cluster\node*\config\elasticsearch.yml配置文件

node1节点:

http.cors.enabled: true
http.cors.allow-origin: "*"
#节点1的配置信息:
#集群名称,保证唯一
cluster.name: my-elasticsearch
#节点名称,必须不一样
node.name: node-1
#必须为本机的ip地址
network.host: 127.0.0.1
#服务端口号,在同一集群下必须不一样
http.port: 9200
#集群间通信端口号,在同一集群下必须不一样
transport.tcp.port: 9300
#设置集群自动发现机器ip集合
discovery.zen.ping.unicast.hosts: ["127.0.0.1:9300","127.0.0.1:9301","127.0.0.1:9302"]

node2节点:

http.cors.enabled: true
http.cors.allow-origin: "*"
#节点2的配置信息:
#集群名称,保证唯一
cluster.name: my-elasticsearch
#节点名称,必须不一样
node.name: node-2
#必须为本机的ip地址
network.host: 127.0.0.1
#服务端口号,在同一集群下必须不一样
http.port: 9201
#集群间通信端口号,在同一集群下必须不一样
transport.tcp.port: 9301
#设置集群自动发现机器ip集合
discovery.zen.ping.unicast.hosts: ["127.0.0.1:9300","127.0.0.1:9301","127.0.0.1:9302"]

node3节点:

http.cors.enabled: true
http.cors.allow-origin: "*"
#节点3的配置信息:
#集群名称,保证唯一
cluster.name: my-elasticsearch
#节点名称,必须不一样
node.name: node-3
#必须为本机的ip地址
network.host: 127.0.0.1
#服务端口号,在同一集群下必须不一样
http.port: 9202
#集群间通信端口号,在同一集群下必须不一样
transport.tcp.port: 9302
#设置集群自动发现机器ip集合
discovery.zen.ping.unicast.hosts: ["127.0.0.1:9300","127.0.0.1:9301","127.0.0.1:9302"]
6.2.3 启动各个节点服务器

双击elasticsearch-cluster\node*\bin\elasticsearch.bat

启动节点1:
启动节点2:
启动节点3:


6.2.4 集群测试


添加索引和映射

PUT		localhost:9200/blog1
{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"
                }
            }
        }
    }
}

添加文档

POST	localhost:9200/blog1/article/1
{
	"id":1,
	"title":"ElasticSearch是一个基于Lucene的搜索服务器",
	"content":"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
}

使用elasticsearch-header查看集群情况

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/784865.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Unity2D 2022:】制作NPC

一、创建NPC角色 1. 创建JambiNPC并同时创建Jambi站立动画 &#xff08;1&#xff09;点击第一张图片&#xff0c;按住shift不松&#xff0c;再选中后两张图片&#xff0c;拖到层级面板中 &#xff08;2&#xff09;将动画资源文件保存到Animation Clips文件夹中 &#xff08;…

YOLOv10改进 | 损失函数篇 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数

一、本文介绍 本文给大家带来的是YOLOv10最新改进&#xff0c;为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数&#xff0c;形成 InnerIoU、InnerSIoU、InnerWIoU、等新版本损失函数&#xff0c;同时还结合了Focus和…

PHP源码:线上书店系统(附管理后台+前台)

一. 前言 今天小编给大家带来了一款可学习&#xff0c;可商用的&#xff0c;线上书店 源码&#xff0c;支持二开&#xff0c;无加密。项目的内容是销售书籍&#xff0c;可以扩展成pdf&#xff0c;文档等一些虚拟产品的销售。 详细界面和功能见下面视频演示。 二. 视频演示 线…

一个php文件怎么实现联系表单自动发送邮件

学习PHP&#xff1a;如何编写一个自动发送邮件的联系表单处理器&#xff1f; 无论是反馈意见、业务咨询&#xff0c;还是技术支持&#xff0c;联系表单都能为用户提供便捷的交流途径。AokSend将探讨如何通过一个PHP文件实现联系表单的自动发送邮件功能。 php文件&#xff1a;…

【豆包AI】北京春田知韵

看到有国内AI上线了&#xff0c;网络信息那么多&#xff0c;我该怎么找它的官网呢&#xff1f; 找官方网站3步 1百度 关于抖音豆包的网站是哪个?【www.doubao.com】 豆包属于哪个公司&#xff1f;【北京春田知韵科技有限公司】 www.doubao.com 2查询备案号 PC版本的安装…

外卖跑腿小程序APP软件成品系统和软甲开发APP小程序可进行封装打包

&#xff0c;用户友好界面设计 首先&#xff0c;外卖施限小程序APP应具备用户友好的界面设计。界面应简洁明了&#xff0c;让用户能够方便快捷地议,览和选择所需的菜品或服务。系统应提供详细的菜品描述、价格透明&#xff0c;并允许用户根据口味、偏好进行结进和排序。此外&am…

如何保证队列消息的有序性

要保证队列消息的有序性&#xff0c;你可以采取以下几种策略&#xff1a; 1.单一生产者和消费者&#xff1a;确保只有一个生产者向队列发送消息&#xff0c;以及只有一个消费者从队列接收消息&#xff0c;这样可以保证消息的顺序。 2.使用有序集合&#xff1a;如果你使用Redis&…

GPU发展史(二):改变游戏规则的3Dfx Voodoo

小伙伴们&#xff0c;大家好呀&#xff0c;我是老猫。 在上一篇GPU发展史&#xff08;一&#xff09;文章中&#xff0c;我们介绍了1976-1995期间早期显卡的发展故事&#xff0c;今天我们将介绍在1995-1999年这段时间显卡的故事&#xff0c;而这段故事的主角就是——3Dfx 提起…

在idea中查看某个接口的所有实现类图

一、选中某个接口右键 ---> Diagrams ---> show Diagrams&#xff0c;然后就会进入一个新的 tab 页&#xff1b; 二、然后在出来的图上选中某个接口右键 ---> show Implementations&#xff0c;就会显示选中接口的所有实现类列表&#xff1b; 三、最后 ctrl A 全部选…

StarRocks下载使用说明和基础操作

简介 StarRocks 是一款高性能分析型数据仓库&#xff0c;使用向量化、MPP 架构、CBO、智能物化视图、可实时更新的列式存储引擎等技术实现多维、实时、高并发的数据分析。StarRocks 既支持从各类实时和离线的数据源高效导入数据&#xff0c;也支持直接分析数据湖上各种格式的数…

普中51单片机:矩阵按键扫描与应用详解(五)

文章目录 引言电路图开发板IO连接矩阵键盘的工作原理行列扫描逐行/逐列扫描 LCD1602代码库代码演示——暴力扫描代码演示——数码管(行列式)代码演示——线翻转法代码演示——LCD1602密码锁 引言 矩阵按键是一种通过行列交叉连接的按键阵列&#xff0c;可以有效地减少单片机I/…

萝卜快跑的狠活

萝卜快跑作为百度旗下的自动驾驶出行服务平台&#xff0c;在科技应用上展现了多项领先的技术。以下是萝卜快跑采用的一些主要科技“狠活”&#xff1a; 自动驾驶技术&#xff1a; 萝卜快跑主要使用了百度Apollo的L4级自动驾驶技术&#xff0c;该技术能够应对海量的城市道路场景…

Vue的常见指令

目录 1.v-bind 2. class绑定 3.style绑定 4.v-if/v-show 1.v-bind v-bind指令用于绑定属性 可以简写成 “ &#xff1a;” 它的作用就是我们可以动态的定义属性的值&#xff0c;比如常见的<img src "1.jpg"> 我们如果想要修改图片就需要获取到DOM对象&am…

Nginx:关于实现跨域代理

运维专题 Nginx&#xff1a;关于实现跨域代理 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.ne…

科普文:分布式系统的架构设计模式

一、分布式架构基本概念 分布式架构是一种计算机系统设计方法&#xff0c;它将一个复杂的系统划分为多个自治的组件或节点&#xff0c;并通过网络进行通信和协作。每个组件或节点在功能上可以相互独立&#xff0c;但又能够通过消息传递或共享数据来实现协同工作。分布式架构主要…

为什么独立站需要高质量的GPB外链?

独立站需要高质量的GPB外链&#xff0c;主要是因为它们能显著提升网站的可信度和可见性。高质量的外链相当于得到其他权威网站的认可和推荐&#xff0c;这会让搜索引擎认为你的内容有价值&#xff0c;从而提升你的搜索排名。试想一下&#xff0c;当其他有影响力的网站愿意链接到…

设计模式7-装饰模式

设计模式7-装饰模式 写在前面动机模式定义结构代码推导原始代码解决问题分析 选择装饰模式的理由1. 职责分离&#xff08;Single Responsibility Principle&#xff09;2. 动态扩展功能3. 避免类爆炸4. 开闭原则&#xff08;Open/Closed Principle&#xff09;5. 更好的组合复用…

如何忽略部分文件或者文件夹在git提交项目时

嗨&#xff0c;我是兰若&#xff0c;最近发现有些小伙伴在提交代码时&#xff0c;总是把不该提交的文件&#xff0c;比如说本地批跑的缓存文件给提交到了git上面&#xff0c;导致别人在拉取代码的时候&#xff0c;也会把这部分文件拉取到自己本地&#xff0c;从而导致和本地的缓…

深度学习(笔记内容)

1.国内镜像网站 pip使用清华源镜像源 pip install <库> -i https://pypi.tuna.tsinghua.edu.cn/simple/ pip使用豆瓣的镜像源 pip install <库> -i https://pypi.douban.com/simple/ pip使用中国科技大学的镜像源 pip install <库> -i https://pypi.mirro…

PyCharm如何安装requirements.txt中的依赖包

问题&#xff1a;下载别人的源码&#xff0c;如何安装代码中requirement.txt中的依赖包。 解决方案&#xff1a; &#xff08;1&#xff09;打开PyCharm下面的Terminal&#xff0c;先为代码创建单独的虚拟环境并进入到虚拟环境中&#xff08;每个项目单独的环境&#xff0c;这…