昇思第18天打卡|ShuffleNet图像分类

ShuffleNet网络介绍

ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。

了解ShuffleNet更多详细内容,详见论文ShuffleNet。

如下图所示,ShuffleNet在保持不低的准确率的前提下,将参数量几乎降低到了最小,因此其运算速度较快,单位参数量对模型准确率的贡献非常高。

shufflenet1

图片来源:Bianco S, Cadene R, Celona L, et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access, 2018, 6: 64270-64277.

模型架构

ShuffleNet最显著的特点在于对不同通道进行重排来解决Group Convolution带来的弊端。通过对ResNet的Bottleneck单元进行改进,在较小的计算量的情况下达到了较高的准确率。

Pointwise Group Convolution

Group Convolution(分组卷积)原理如下图所示,相比于普通的卷积操作,分组卷积的情况下,每一组的卷积核大小为in_channels/g*k*k,一共有g组,所有组共有(in_channels/g*k*k)*out_channels个参数,是正常卷积参数的1/g。分组卷积中,每个卷积核只处理输入特征图的一部分通道,其优点在于参数量会有所降低,但输出通道数仍等于卷积核的数量

shufflenet2

图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.

Depthwise Convolution(深度可分离卷积)将组数g分为和输入通道相等的in_channels,然后对每一个in_channels做卷积操作,每个卷积核只处理一个通道,记卷积核大小为1*k*k,则卷积核参数量为:in_channels*k*k,得到的feature maps通道数与输入通道数相等

Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组的卷积核大小为 1×11×1,卷积核参数量为(in_channels/g*1*1)*out_channels。



%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore






from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensor
​
class GroupConv(nn.Cell):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride, pad_mode="pad", pad=0, groups=1, has_bias=False):
        super(GroupConv, self).__init__()
        self.groups = groups
        self.convs = nn.CellList()
        for _ in range(groups):
            self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,
                                        kernel_size=kernel_size, stride=stride, has_bias=has_bias,
                                        padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))
​
    def construct(self, x):
        features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)
        outputs = ()
        for i in range(self.groups):
            outputs = outputs + (self.convs[i](features[i].astype("float32")),)
        out = ops.cat(outputs, axis=1)
        return out

 

Channel Shuffle

Group Convolution的弊端在于不同组别的通道无法进行信息交流,堆积GConv层后一个问题是不同组之间的特征图是不通信的,这就好像分成了g个互不相干的道路,每一个人各走各的,这可能会降低网络的特征提取能力。这也是Xception,MobileNet等网络采用密集的1x1卷积(Dense Pointwise Convolution)的原因。

为了解决不同组别通道“近亲繁殖”的问题,ShuffleNet优化了大量密集的1x1卷积(在使用的情况下计算量占用率达到了惊人的93.4%),引入Channel Shuffle机制(通道重排)。这项操作直观上表现为将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。

shufflenet3

如下图所示,对于g组,每组有n个通道的特征图,首先reshape成g行n列的矩阵,再将矩阵转置成n行g列,最后进行flatten操作,得到新的排列。这些操作都是可微分可导的且计算简单,在解决了信息交互的同时符合了ShuffleNet轻量级网络设计的轻量特征。

shufflenet4

为了阅读方便,将Channel Shuffle的代码实现放在下方ShuffleNet模块的代码中。

ShuffleNet模块

如下图所示,ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), (c)的更改:

  1. 将开始和最后的1×11×1卷积模块(降维、升维)改成Point Wise Group Convolution;

  2. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;

  3. 降采样模块中,3×33×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为2的3×33×3平均池化,并把相加改成拼接。

shufflenet5

class ShuffleV1Block(nn.Cell):
    def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):
        super(ShuffleV1Block, self).__init__()
        self.stride = stride
        pad = ksize // 2
        self.group = group
        if stride == 2:
            outputs = oup - inp
        else:
            outputs = oup
        self.relu = nn.ReLU()
        branch_main_1 = [
            GroupConv(in_channels=inp, out_channels=mid_channels,
                      kernel_size=1, stride=1, pad_mode="pad", pad=0,
                      groups=1 if first_group else group),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(),
        ]
        branch_main_2 = [
            nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,
                      pad_mode='pad', padding=pad, group=mid_channels,
                      weight_init='xavier_uniform', has_bias=False),
            nn.BatchNorm2d(mid_channels),
            GroupConv(in_channels=mid_channels, out_channels=outputs,
                      kernel_size=1, stride=1, pad_mode="pad", pad=0,
                      groups=group),
            nn.BatchNorm2d(outputs),
        ]
        self.branch_main_1 = nn.SequentialCell(branch_main_1)
        self.branch_main_2 = nn.SequentialCell(branch_main_2)
        if stride == 2:
            self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')

    def construct(self, old_x):
        left = old_x
        right = old_x
        out = old_x
        right = self.branch_main_1(right)
        if self.group > 1:
            right = self.channel_shuffle(right)
        right = self.branch_main_2(right)
        if self.stride == 1:
            out = self.relu(left + right)
        elif self.stride == 2:
            left = self.branch_proj(left)
            out = ops.cat((left, right), 1)
            out = self.relu(out)
        return out

    def channel_shuffle(self, x):
        batchsize, num_channels, height, width = ops.shape(x)
        group_channels = num_channels // self.group
        x = ops.reshape(x, (batchsize, group_channels, self.group, height, width))
        x = ops.transpose(x, (0, 2, 1, 3, 4))
        x = ops.reshape(x, (batchsize, num_channels, height, width))
        return x

 

构建ShuffleNet网络

ShuffleNet网络结构如下图所示,以输入图像224×224224×224,组数3(g = 3)为例,首先通过数量24,卷积核大小为3×33×3,stride为2的卷积层,输出特征图大小为112×112112×112,channel为24;然后通过stride为2的最大池化层,输出特征图大小为56×5656×56,channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图(c)),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为1×1×9601×1×960,再经过全连接层和softmax,得到分类概率。

shufflenet6

class ShuffleNetV1(nn.Cell):
    def __init__(self, n_class=1000, model_size='2.0x', group=3):
        super(ShuffleNetV1, self).__init__()
        print('model size is ', model_size)
        self.stage_repeats = [4, 8, 4]
        self.model_size = model_size
        if group == 3:
            if model_size == '0.5x':
                self.stage_out_channels = [-1, 12, 120, 240, 480]
            elif model_size == '1.0x':
                self.stage_out_channels = [-1, 24, 240, 480, 960]
            elif model_size == '1.5x':
                self.stage_out_channels = [-1, 24, 360, 720, 1440]
            elif model_size == '2.0x':
                self.stage_out_channels = [-1, 48, 480, 960, 1920]
            else:
                raise NotImplementedError
        elif group == 8:
            if model_size == '0.5x':
                self.stage_out_channels = [-1, 16, 192, 384, 768]
            elif model_size == '1.0x':
                self.stage_out_channels = [-1, 24, 384, 768, 1536]
            elif model_size == '1.5x':
                self.stage_out_channels = [-1, 24, 576, 1152, 2304]
            elif model_size == '2.0x':
                self.stage_out_channels = [-1, 48, 768, 1536, 3072]
            else:
                raise NotImplementedError
        input_channel = self.stage_out_channels[1]
        self.first_conv = nn.SequentialCell(
            nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),
            nn.BatchNorm2d(input_channel),
            nn.ReLU(),
        )
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        features = []
        for idxstage in range(len(self.stage_repeats)):
            numrepeat = self.stage_repeats[idxstage]
            output_channel = self.stage_out_channels[idxstage + 2]
            for i in range(numrepeat):
                stride = 2 if i == 0 else 1
                first_group = idxstage == 0 and i == 0
                features.append(ShuffleV1Block(input_channel, output_channel,
                                               group=group, first_group=first_group,
                                               mid_channels=output_channel // 4, ksize=3, stride=stride))
                input_channel = output_channel
        self.features = nn.SequentialCell(features)
        self.globalpool = nn.AvgPool2d(7)
        self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)

    def construct(self, x):
        x = self.first_conv(x)
        x = self.maxpool(x)
        x = self.features(x)
        x = self.globalpool(x)
        x = ops.reshape(x, (-1, self.stage_out_channels[-1]))
        x = self.classifier(x)
        return x

 

模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

训练集准备与加载

采用CIFAR-10数据集对ShuffleNet进行预训练。CIFAR-10共有60000张32*32的彩色图像,均匀地分为10个类别,其中50000张图片作为训练集,10000图片作为测试集。如下示例使用mindspore.dataset.Cifar10Dataset接口下载并加载CIFAR-10的训练集。目前仅支持二进制版本(CIFAR-10 binary version)。

from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"

download(url, "./dataset", kind="tar.gz", replace=True)

import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transforms

def get_dataset(train_dataset_path, batch_size, usage):
    image_trans = []
    if usage == "train":
        image_trans = [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5),
            vision.Resize((224, 224)),
            vision.Rescale(1.0 / 255.0, 0.0),
            vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
            vision.HWC2CHW()
        ]
    elif usage == "test":
        image_trans = [
            vision.Resize((224, 224)),
            vision.Rescale(1.0 / 255.0, 0.0),
            vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
            vision.HWC2CHW()
        ]
    label_trans = transforms.TypeCast(ms.int32)
    dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)
    dataset = dataset.map(image_trans, 'image')
    dataset = dataset.map(label_trans, 'label')
    dataset = dataset.batch(batch_size, drop_remainder=True)
    return dataset

dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
batches_per_epoch = dataset.get_dataset_size()

 

模型训练

本节用随机初始化的参数做预训练。首先调用ShuffleNetV1定义网络,参数量选择"2.0x",并定义损失函数为交叉熵损失,学习率经过4轮的warmup后采用余弦退火,优化器采用Momentum。最后用train.model中的Model接口将模型、损失函数、优化器封装在model中,并用model.train()对网络进行训练。将ModelCheckpointCheckpointConfigTimeMonitorLossMonitor传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。

import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracy

def train():
    mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")
    net = ShuffleNetV1(model_size="2.0x", n_class=10)
    loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)
    min_lr = 0.0005
    base_lr = 0.05
    lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,
                                                base_lr,
                                                batches_per_epoch*250,
                                                batches_per_epoch,
                                                decay_epoch=250)
    lr = Tensor(lr_scheduler[-1])
    optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)
    loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)
    model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)
    callback = [TimeMonitor(), LossMonitor()]
    save_ckpt_path = "./"
    config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)
    ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)
    callback += [ckpt_callback]

    print("============== Starting Training ==============")
    start_time = time.time()
    # 由于时间原因,epoch = 5,可根据需求进行调整
    model.train(5, dataset, callbacks=callback)
    use_time = time.time() - start_time
    hour = str(int(use_time // 60 // 60))
    minute = str(int(use_time // 60 % 60))
    second = str(int(use_time % 60))
    print("total time:" + hour + "h " + minute + "m " + second + "s")
    print("============== Train Success ==============")

if __name__ == '__main__':
    train()

 

练好的模型保存在当前目录的shufflenetv1-5_390.ckpt中,用作评估。

模型评估

在CIFAR-10的测试集上对模型进行评估。

设置好评估模型的路径后加载数据集,并设置Top 1, Top 5的评估标准,最后用model.eval()接口对模型进行评估。

from mindspore import load_checkpoint, load_param_into_net

def test():
    mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")
    dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")
    net = ShuffleNetV1(model_size="2.0x", n_class=10)
    param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
    load_param_into_net(net, param_dict)
    net.set_train(False)
    loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)
    eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),
                    'Top_5_Acc': Top5CategoricalAccuracy()}
    model = Model(net, loss_fn=loss, metrics=eval_metrics)
    start_time = time.time()
    res = model.eval(dataset, dataset_sink_mode=False)
    use_time = time.time() - start_time
    hour = str(int(use_time // 60 // 60))
    minute = str(int(use_time // 60 % 60))
    second = str(int(use_time % 60))
    log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \
        + "', time: " + hour + "h " + minute + "m " + second + "s"
    print(log)
    filename = './eval_log.txt'
    with open(filename, 'a') as file_object:
        file_object.write(log + '\n')

if __name__ == '__main__':
    test()

模型预测

在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

mport mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as ds

net = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [
    vision.RandomCrop((32, 32), (4, 4, 4, 4)),
    vision.RandomHorizontalFlip(prob=0.5),
    vision.Resize((224, 224)),
    vision.Rescale(1.0 / 255.0, 0.0),
    vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
    vision.HWC2CHW()
        ]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:
    plt.subplot(2, 8, index+1)
    plt.title('{}'.format(class_dict[pred[index]]))
    index += 1
    plt.imshow(image)
    plt.axis("off")
plt.show()

心得:总的来说,通过这次学习,我对MindSpore和ShuffleNet有了更深入的了解,也积累了宝贵的实践经验。我相信,这将对我的职业发展产生积极的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/783660.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用命令行修改Ubuntu 24.04的网络设置

Ubuntu里,使用命令行下修改IP地址,网上有很多方案,我最终觉得这个方案(使用Netplan)最好,最根本,记录下来备查 1.使用命令ip link show 查看Ubuntu上可以使用的网络接口名称 2.查找Netplan的配…

「Java开发指南」如何用MyEclipse完成Spring Web Flow 2.0搭建?

本教程将引导您完成Spring Web Flow的软件组件生成,这是Spring的一个项目,用于简化Web应用程序的开发。虽然Spring Web Flow与Spring MVC兼容,但Spring Web Flow使用流而不是控制器来实现应用程序的Web层。在本教程中,您将学习如何…

放大镜案例

放大镜 <!DOCTYPE html> <html lang"zh-cn"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>商品放大镜</title><link rel&qu…

可控硅整流自动恒流充电器设计制作

该充电器除可为各种镍镉电池充电外&#xff0c;也可为干电池充电。其充电电流可调。充电终止电压由RP1预先确定。 工作原理 电路原理见图1。开始充电时&#xff0c;电池组两端电压较低&#xff0c;不足以使晶体管VT导通。由RC组成的移相电路给可控硅提供触发电流。移相角度由R…

Java技术栈总结:Spring框架篇

一、SpringBean 1、定义方式 </bean>标签&#xff08;XML文件&#xff09;Bean注解Component注解BeanDefinition方法FactoryBeanSupplier 注&#xff1a;BeanDefinition方法为“</bean>标签、Bean注解、Component注解”的底层实现。 &#xff08;1&#xff09;…

【K8s】专题六(5):Kubernetes 稳定性之重启策略、滚动更新策略

以下内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01;如果对您有帮助&#xff0c;烦请点赞、关注、转发&#xff01;欢迎扫码关注个人公众号&#xff01; 目录 一、重启策略 1、基本介绍 2、资源清单&#xff08;示例&#xff09; 二、滚动更新策略 …

深度网络现代实践 - 深度前馈网络之反向传播和其他的微分算法篇-续

序言 反向传播&#xff08;Backpropagation&#xff0c;简称backprop&#xff09;是神经网络训练过程中最关键的技术之一&#xff0c;尤其在多层神经网络中广泛应用。它是一种与优化方法&#xff08;如梯度下降法&#xff09;结合使用的算法&#xff0c;用于计算网络中各参数的…

Zabbix自动发现

目录 自动发现的主要特点包括&#xff1a; 如何配置自动发现&#xff1a; 实验步骤 1. 创建自动发现规则 2. 给自动发现规则创建动作 3. 给新主机安装agent 在 Zabbix 中&#xff0c;自动发现&#xff08;Auto Discovery&#xff09;是一种强大的功能&#xff0c;用于自…

Vue CoreVideoPlayer 一款基于 vue.js 的轻量级、优秀的视频播放器组件

大家好,我是程序视点的小二哥!今天小二哥给大家推荐一款非常优秀的视频播放组件 效果欣赏 介绍 Vue-CoreVideoPlayer 一款基于vue.js的轻量级的视频播放器插件。 采用Adobd XD进行UI设计&#xff0c;支持移动端适配,不仅功能强大&#xff0c;颜值也是超一流&#xff01; Vue-…

读书记录《SQL从小白到大牛》01

读书记录《SQL从小白到大牛》01 接地气的书名&#xff0c;内容应当值得一读。 第一篇 SQL基础 01 一些基础概念 SQL是结构化查询语言&#xff08;Structured Query Language&#xff09;&#xff0c;是一套用来输入、更改和查看关系数据库内容的命令。数据库发展经历三个阶…

ROS-机械臂-基础概念

课纲 话题通信模型&#xff08;多对多&#xff09; RPC RPC&#xff0c;全称为 Remote Procedure Call&#xff0c;即远程过程调用&#xff0c;是一种通信协议&#xff0c;允许一个计算机程序在另一个网络上的计算机上执行一组函数或过程&#xff0c;而不需程序员显式编码网络…

SketchUp如何阵列?

sketchup如何阵列&#xff1f;请看下面方法。 方法 打开SketchUp。 以默认人物为例。 按M&#xff0c;选中人物&#xff0c;再按住Ctrl移动鼠标&#xff08;不要点击鼠标键&#xff09; 按键盘数字键输入距离&#xff0c;按回车&#xff0c;不要动鼠标。 按*10设置阵列数。 按…

前端开发攻略---webSocket的简单实现与使用

1、演示 2、实现流程 安装依赖 npm i ws 服务端代码 const WebSocket require(ws)// 创建一个 WebSocket 服务器&#xff0c;监听端口 3000 const wss new WebSocket.Server({ port: 3000 })// 监听连接事件 wss.on(connection, function connection(ws) {console.log(客户端…

MySQL篇四:表的约束

文章目录 前言1. 空属性2. 默认值3. 列描述4. zerofill5. 主键6. 自增长7. 唯一键8. 外键 前言 真正约束字段的是数据类型&#xff0c;但是数据类型约束很单一&#xff0c;需要有一些额外的约束&#xff0c;更好的保证数据的合法性&#xff0c;从业务逻辑角度保证数据的正确性。…

香橙派编译linux内核支持ebpf和虚拟WIFI

前言 上一篇文章香橙派5plus上跑云手机方案一 redroid(带硬件加速)中说了怎么运行redroid&#xff0c;这篇补一下怎么修改参数编译内核。 补充 上篇文章有个内容需要补充一下&#xff1a;更新完内核需要用下面的命令防止内核被apt更新&#xff0c;不然后面使用apt update又回…

MySQL 8.0新特性INTERSECT和EXCEPT用于集合运算

MySQL8.0.31 新版本的推出&#xff0c;MySQL增加了对SQL标准INTERSECT和EXCEPT运算符的支持。 1、INTERSECT INTERSECT输出多个SELECT语句查询结果中的共有行。INTERSECT运算符是ANSI/ISO SQL标准的一部分(ISO/IEC 9075-2:2016(E))。 我们运行两个查询&#xff0c;第一个会列…

HTML5新增的input元素类型:number、range、email、color、date等

HTML5 大幅度地增加与改良了 input 元素的种类&#xff0c;可以简单地使用这些元素来实现 HTML5 之前需要使用 JavaScript 才能实现的许多功能。 到目前为止&#xff0c;大部分浏览器都支持 input 元素的种类。对于不支持新增 input 元素的浏览器&#xff0c;input 元素被统一…

位置编码的具体计算方式(公式解释)

公式 (10.6.2) 描述了位置编码的具体计算方式&#xff0c;这种位置编码基于正弦和余弦函数&#xff0c;用于在自注意力机制中引入位置信息。下面我们详细解释公式和代码。 公式 (10.6.2) 公式 (10.6.2) 的目的是为输入序列中的每个词元添加一个位置编码&#xff0c;以保留序列…

厦门大学-中央空调分户计费预付费管理系统案例

厦门大学-中央空调分户计费预付费管理系统案例 实现中央空调节能与舒适的双重目标随着社会的发展和人们生活水平的提高&#xff0c;空调已成为现代建筑中不可或缺的设备。传统的集中计费方式已无法满足多样化的用户需求和节能减排的市场趋势。中央空调如何公平、公正、合理的收…

笔记本电脑投屏怎么操作?一看就会!

日常工作或办公都会用到笔记本电脑&#xff0c;但很多新手用户不知道笔记本电脑的投屏要怎么操作&#xff1f;接下来系统之家给大家介绍三种简单的操作方法&#xff0c;帮助大家轻松完成笔记本电脑投屏投屏操作&#xff0c;从而满足自己的办公或学习使用需求。 方法一 1. 直接W…