java-数据结构与算法-02-数据结构-03-递归

1. 概述

定义

计算机科学中,递归是一种解决计算问题的方法,其中解决方案取决于同一类问题的更小子集

In computer science, recursion is a method of solving a computational
problem where the solution depends on solutions to smaller instances
of the same problem.

比如单链表递归遍历的例子:

void f(Node node) {
    if(node == null) {
        return;
    }
    println("before:" + node.value)
    f(node.next);
    println("after:" + node.value)
}

说明:

  1. 自己调用自己,如果说每个函数对应着一种解决方案,自己调用自己意味着解决方案是一样的(有规律的)
  2. 每次调用,函数处理的数据会较上次缩减(子集),而且最后会缩减至无需继续递归
  3. 内层函数调用(子集处理)完成,外层函数才能算调用完成

原理

假设链表中有 3 个节点,value 分别为 1,2,3,以上代码的执行流程就类似于下面的伪码

// 1 -> 2 -> 3 -> null  f(1)

void f(Node node = 1) {
    println("before:" + node.value) // 1
    void f(Node node = 2) {
        println("before:" + node.value) // 2
        void f(Node node = 3) {
            println("before:" + node.value) // 3
            void f(Node node = null) {
                if(node == null) {
                    return;
                }
            }
            println("after:" + node.value) // 3
        }
        println("after:" + node.value) // 2
    }
    println("after:" + node.value) // 1
}

思路

  1. 确定能否使用递归求解
  2. 推导出递推关系,即父问题与子问题的关系,以及递归的结束条件

例如之前遍历链表的递推关系为

f ( n ) = { 停止 n = n u l l f ( n . n e x t ) n ≠ n u l l f(n) = \begin{cases} 停止& n = null \\ f(n.next) & n \neq null \end{cases} f(n)={停止f(n.next)n=nulln=null

  • 深入到最里层叫做递
  • 从最里层出来叫做归
  • 在递的过程中,外层函数内的局部变量(以及方法参数)并未消失,归的时候还可以用到

2. 单路递归 Single Recursion

E01. 阶乘

用递归方法求阶乘

● 阶乘的定义 n ! = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 2 ) ⋅ ( n − 1 ) ⋅ n n!= 1⋅2⋅3⋯(n-2)⋅(n-1)⋅n n!=123(n2)(n1)n,其中 n n n 为自然数,当然 0 ! = 1 0! = 1 0!=1
● 递推关系

f ( n ) = { 1 n = 1 n ∗ f ( n − 1 ) n > 1 f(n) = \begin{cases} 1 & n = 1\\ n * f(n-1) & n > 1 \end{cases} f(n)={1nf(n1)n=1n>1

代码

private static int f(int n) {
    if (n == 1) {
        return 1;
    }
    return n * f(n - 1);
}

拆解伪码如下,假设 n 初始值为 3

f(int n = 3) { // 解决不了,递
    return 3 * f(int n = 2) { // 解决不了,继续递
        return 2 * f(int n = 1) {
            if (n == 1) { // 可以解决, 开始归
                return 1;
            }
        }
    }
}

E02. 反向打印字符串

用递归反向打印字符串,n 为字符在整个字符串 str 中的索引位置

  • 递:n 从 0 开始,每次 n + 1,一直递到 n == str.length() - 1
  • 归:从 n == str.length() 开始归,从归打印,自然是逆序的

递推关系
f ( n ) = { 停止 n = s t r . l e n g t h ( ) f ( n + 1 ) 0 ≤ n ≤ s t r . l e n g t h ( ) − 1 f(n) = \begin{cases} 停止 & n = str.length() \\ f(n+1) & 0 \leq n \leq str.length() - 1 \end{cases} f(n)={停止f(n+1)n=str.length()0nstr.length()1

代码为

public static void reversePrint(String str, int index) {
    if (index == str.length()) {
        return;
    }
    reversePrint(str, index + 1);
    System.out.println(str.charAt(index));
}

拆解伪码如下,假设字符串为 “abc”

void reversePrint(String str, int index = 0) {
    void reversePrint(String str, int index = 1) {
        void reversePrint(String str, int index = 2) {
            void reversePrint(String str, int index = 3) { 
                if (index == str.length()) {
                    return; // 开始归
                }
            }
            System.out.println(str.charAt(index)); // 打印 c
        }
        System.out.println(str.charAt(index)); // 打印 b
    }
    System.out.println(str.charAt(index)); // 打印 a
}

E03. 二分查找(单路递归)

public static int binarySearch(int[] a, int target) {
    return recursion(a, target, 0, a.length - 1);
}

public static int recursion(int[] a, int target, int i, int j) {
    if (i > j) {
        return -1;
    }
    int m = (i + j) >>> 1;
    if (target < a[m]) {
        return recursion(a, target, i, m - 1);
    } else if (a[m] < target) {
        return recursion(a, target, m + 1, j);
    } else {
        return m;
    }
}

E04. 冒泡排序(单路递归)

public static void main(String[] args) {
    int[] a = {3, 2, 6, 1, 5, 4, 7};
    bubble(a, 0, a.length - 1);
    System.out.println(Arrays.toString(a));
}

private static void bubble(int[] a, int low, int high) {
    if(low == high) {
        return;
    }
    int j = low;
    for (int i = low; i < high; i++) {
        if (a[i] > a[i + 1]) {
            swap(a, i, i + 1);
            j = i;
        }
    }
    bubble(a, low, j);
}

private static void swap(int[] a, int i, int j) {
    int t = a[i];
    a[i] = a[j];
    a[j] = t;
}
  • low 与 high 为未排序范围
  • j 表示的是未排序的边界,下一次递归时的 high
    • 发生交换,意味着有无序情况
    • 最后一次交换(以后没有无序)时,左侧 i 仍是无序,右侧 i+1 已然有序

E05. 插入排序(单路递归)

先复习下插入排序:
假设前面 n-1(其中 n>=2)个数已经是排好顺序的,现将第 n 个数插到前面已经排好的序列中,然后找到合适自己的位置,使得插入第n个数的这个序列也是排好顺序的。

按照此法对所有元素进行插入,直到整个序列排为有序的过程,称为插入排序。

从小到大的插入排序整个过程如图示:

第一轮:从第二位置的 6 开始比较,比前面 7 小,交换位置。

在这里插入图片描述
第二轮:第三位置的 9 比前一位置的 7 大,无需交换位置。

在这里插入图片描述
第三轮:第四位置的 3 比前一位置的 9 小交换位置,依次往前比较。
在这里插入图片描述
就这样依次比较到最后一个元素。

public static void main(String[] args) {
    int[] a = {3, 2, 6, 1, 5, 7, 4};
    insertion(a, 1, a.length - 1);
    System.out.println(Arrays.toString(a));
}

    /**
     * 使用插入排序算法对数组进行排序。
     * 该方法通过递归方式逐步将未排序的元素插入到已排序的序列中,直到所有元素都被排序。
     * 
     * @param a 待排序的数组。
     * @param low 当前需要排序的起始位置。
     */
    private static void insertion(int[] a, int low) {
        // 如果当前位置等于数组长度,说明所有元素都已经排序完成,递归结束。
        if (low == a.length) {
            return;
        }

        // 将当前需要排序的元素暂存到变量t中。
        int t = a[low];
        // 初始化已排序区域的指针i为当前需要排序位置的前一个位置。
        int i = low - 1; // 已排序区域指针

        // 向前移动已排序区域的指针i,直到找到t应该插入的位置。
        while (i >= 0 && t < a[i]) { // 没有找到插入位置
            // 将已排序区域的元素向后移动一位,为空出插入位置。
            a[i + 1] = a[i]; // 空出插入位置
            i--;
        }

        // 如果t的插入位置不是low位置,将t插入到正确的位置。
        // 找到插入位置
        if (i + 1 != low) {
            a[i + 1] = t;
        }

        // 递归调用插入排序函数,对下一个元素进行排序。
        insertion(a, low + 1);
    }
  • 已排序区域:[0 … i … low-1]
  • 未排序区域:[low … high]
  • 只考虑 low 边界的情况,参考以上代码,理解 low-1 … high 范围内的处理方法
  • 扩展:利用二分查找 leftmost 版本,改进寻找插入位置的代码

E06. 约瑟夫问题(单路递归)

n n n 个人排成圆圈,从头开始报数,每次数到第 m m m 个人( m m m 1 1 1 开始)杀之,继续从下一个人重复以上过程,求最后活下来的人是谁?

例如N=6,M=5,被杀掉的顺序是:5,4,6,2,3,1。
如图:
在这里插入图片描述
递归公式

f(n,m)=(f(n-1,m)+m-1)%n+1
f(n,m)指n个人,报第m个编号淘汰最终编号

推导过程:

当n=1时,最后一个淘汰也是第一个淘汰的为编号1

当n>1时,如下图所示

在这里插入图片描述
可以看出,设原编号为i,新编号为j,则可得到

i = (j + m - 1) % n + 1

最终递推式

f ( n , m ) = { ( f ( n − 1 , m ) + m ) % n n > 1 0 n = 1 f(n,m) = \begin{cases} (f(n-1,m) + m) \% n & n>1\\ 0 & n = 1 \end{cases} f(n,m)={(f(n1,m)+m)%n0n>1n=1

这样,我们就不用模拟操作,可以直接从数值的关系找到递推的关系,可以轻轻松松的写下代码:

import java.util.*;

public class Joseph {
    public int getResult(int n, int m) {
        if (n == 1) {
            return 1; 
        }
        return (getResult(n-1, m) + m - 1) % n + 1;
    }
}

迭代方式如下

public class Joseph {
    public int getResult(int n, int m) {
        int value = 1;
        for (int i = 1; i <= n; i++) {
            value = (value + m - 1) % i + 1;
        }
        return value;
    }
}

3. 多路递归 Multi Recursion

E01. 斐波那契数列-Leetcode 70

● 之前的例子是每个递归函数只包含一个自身的调用,这称之为 single recursion
● 如果每个递归函数例包含多个自身调用,称之为 multi recursion

🤔简单的介绍以下斐波那契数列是什么

💥斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo
Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,
F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*).

斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21,34,55,89…

这个数列从第3项开始,每一项都等于前两项之和。

了解之后,接下来来分析如何通过递归实现一个斐波那契数列。

递推关系

f ( n ) = { 0 n = 0 1 n = 1 f ( n − 1 ) + f ( n − 2 ) n > 1 f(n) = \begin{cases} 0 & n=0 \\ 1 & n=1 \\ f(n-1) + f(n-2) & n>1 \end{cases} f(n)= 01f(n1)+f(n2)n=0n=1n>1

下面的表格列出了数列的前几项

F0F1F2F3F4F5F6F7F8F9F10F11F12F13
01123581321345589144233

接下来实现一个通过我们输入一个数列数,来判断该数具体的数值为多少?比如输入第8项,会输出对应斐波那契数列中的13.斐波那契数列中依次是从左到右,由第一项开始。

实现思路:

    (一)首先我们得先找一下想要让此递归方法终止的条件是什么,再着手于每一次调用的变化。

    (二)斐波那契数列的第一项和第二项分别是0和1,而往后的第三项,第四项...都是其前两项的和,往往终止条件即是起始条件,我们可以把第一项和第二项视为终止条件,可以把往后的第N项拆分成若干个第一项和第二项相加。

    (三)以我们输入的第n项,进行第一次调用时判断是否满足终止条件,如不满足则进行“递”的过程,将第n项的前一项和前两项再进行传递,依次判断,到最后n为第一项或第二项时,进行“归”的过程,依次相加得出最后的结果。

在这里插入图片描述

public static int f(int n) {
    if (n == 0) {
        return 0;
    }
    if (n == 1) {
        return 1;
    }
    return f(n - 1) + f(n - 2);
}

执行流程

在这里插入图片描述

  • 绿色代表正在执行(对应递),灰色代表执行结束(对应归)
  • 递不到头,不能归,对应着深度优先搜索

时间复杂度

  • 递归的次数也符合斐波那契规律, 2 ∗ f ( n + 1 ) − 1 2 * f(n+1)-1 2f(n+1)1
  • 时间复杂度推导过程
    • 斐波那契通项公式 f ( n ) = 1 5 ∗ ( 1 + 5 2 n − 1 − 5 2 n ) f(n) = \frac{1}{\sqrt{5}}*({\frac{1+\sqrt{5}}{2}}^n - {\frac{1-\sqrt{5}}{2}}^n) f(n)=5 1(21+5 n215 n)
    • 简化为: f ( n ) = 1 2.236 ∗ ( 1.618 n − ( − 0.618 ) n ) f(n) = \frac{1}{2.236}*({1.618}^n - {(-0.618)}^n) f(n)=2.2361(1.618n(0.618)n)
    • 带入递归次数公式 2 ∗ 1 2.236 ∗ ( 1.618 n + 1 − ( − 0.618 ) n + 1 ) − 1 2*\frac{1}{2.236}*({1.618}^{n+1} - {(-0.618)}^{n+1})-1 22.2361(1.618n+1(0.618)n+1)1
    • 时间复杂度为 Θ ( 1.61 8 n ) \Theta(1.618^n) Θ(1.618n)

E02. 汉诺塔(多路递归)

Tower of Hanoi,是一个源于印度古老传说:大梵天创建世界时做了三根金刚石柱,在一根柱子从下往上按大小顺序摞着 64 片黄金圆盘,大梵天命令婆罗门把圆盘重新摆放在另一根柱子上,并且规定
● 一次只能移动一个圆盘
● 小圆盘上不能放大圆盘

下面的动图演示了4片圆盘的移动方法
在这里插入图片描述

使用程序代码模拟圆盘的移动过程,并估算出时间复杂度

思路

● 假设每根柱子标号 a,b,c,每个圆盘用 1,2,3 … 表示其大小,圆盘初始在 a,要移动到的目标是 c
● 如果只有一个圆盘,此时是最小问题,可以直接求解
○ 移动圆盘1 a ↦ c a \mapsto c ac
在这里插入图片描述

  • 如果有两个圆盘,那么
    • 圆盘1 a ↦ b a \mapsto b ab
    • 圆盘2 a ↦ c a \mapsto c ac
    • 圆盘1 b ↦ c b \mapsto c bc

在这里插入图片描述

  • 如果有三个圆盘,那么
    • 圆盘12 a ↦ b a \mapsto b ab
    • 圆盘3 a ↦ c a \mapsto c ac
    • 圆盘12 b ↦ c b \mapsto c bc
      在这里插入图片描述
  • 如果有四个圆盘,那么
    • 圆盘 123 a ↦ b a \mapsto b ab
    • 圆盘4 a ↦ c a \mapsto c ac
    • 圆盘 123 b ↦ c b \mapsto c bc

在这里插入图片描述
综上我们可以将问题分解为以下三个步骤:

  • 将A柱上的n-1个盘子移动到B柱上
  • 将A柱上剩下的一个盘子移动到C柱上。
  • 将B柱上的n-1个盘子移动到C柱上。
    通过递归地执行这三个步骤,我们最终可以实现将所有盘子从A柱移动到C柱的目标。

【注意事项】

  • 递归的终止条件:当只有一个盘子时,可以直接将其从A柱移动到C柱,此时递归终止。
  • 递归的分解:将问题分解为三个步骤,每次递归调用都是为了完成这三个步骤中的一个。
    +递归的回溯:在完成一个递归调用后,需要将问题状态恢复到递归调用前的状态,以便进行下一个递归调用。
  • 递归的效率:汉诺塔问题的递归解法时间复杂度为O(2^n),其中n表示盘子的数量。因此,当盘子数量较大时,递归解法的时间复杂度会非常高。

解题

public class E02HanoiTower {


    /*
             源 借 目
        h(4, a, b, c) -> h(3, a, c, b)
                         a -> c
                         h(3, b, a, c)
     */
    static LinkedList<Integer> a = new LinkedList<>();
    static LinkedList<Integer> b = new LinkedList<>();
    static LinkedList<Integer> c = new LinkedList<>();

    static void init(int n) {
        for (int i = n; i >= 1; i--) {
            a.add(i);
        }
    }


    /**
     * <h3>移动圆盘</h3>
     *
     * @param n 圆盘个数
     * @param a 由
     * @param b 借
     * @param c 至
     */
    static void move(int n, LinkedList<Integer> a,
                     LinkedList<Integer> b,
                     LinkedList<Integer> c) {
        if (n == 0) {
            return;
        }
        move(n - 1, a, c, b);   // 把 n-1 个盘子由a,借c,移至b
        c.addLast(a.removeLast()); // 把最后的盘子由 a 移至 c
//        print();
        move(n - 1, b, a, c);   // 把 n-1 个盘子由b,借a,移至c
    }

    private static void print() {
        System.out.println("-----------------------");
        System.out.println(a);
        System.out.println(b);
        System.out.println(c);
    }

    public static void main(String[] args) {
        init(3);
        print();
        move(3, a, b, c);
    }
}

E03. 杨辉三角

在这里插入图片描述

杨辉三角形的特点:

  • 第 n 行有 n 个数字;
  • 每一行的开始和结尾数字都为 1;
  • 从第 3 行起,除去每一行的开始和结尾数字,其余每个数都满足以下条件:
    • 任意一个数等于上一行同列和上一行前一列的和,

如以下杨辉三角形中第 3 行第 2 列中的 2 等于它上一行同列(第 2 行第 2 列中的 1)和上一行前一列(第 2 行第 1 列中的 1)的和。

        1
      1   1
    1   2   1
  1   3   3   1
1   4   6   4   1

● 行 i i i,列 j j j,那么 [ i ] [ j ] [i][j] [i][j] 的取值应为 [ i − 1 ] [ j − 1 ] + [ i − 1 ] [ j ] [i-1][j-1] + [i-1][j] [i1][j1]+[i1][j]
● 当 j = 0 j=0 j=0 i = j i=j i=j 时, [ i ] [ j ] [i][j] [i][j] 取值为 1 1 1

题解

public static void print(int n) {
    for (int i = 0; i < n; i++) {
        if (i < n - 1) {
            System.out.printf("%" + 2 * (n - 1 - i) + "s", " ");
        }

        for (int j = 0; j < i + 1; j++) {
            System.out.printf("%-4d", element(i, j));
        }
        System.out.println();
    }
}

public static int element(int i, int j) {
    if (j == 0 || i == j) {
        return 1;
    }
    return element(i - 1, j - 1) + element(i - 1, j);
}

优化1

是 multiple recursion,因此很多递归调用是重复的,例如

  • recursion(3, 1) 分解为
    • recursion(2, 0) + recursion(2, 1)
  • 而 recursion(3, 2) 分解为
    • recursion(2, 1) + recursion(2, 2)

这里 recursion(2, 1) 就重复调用了,事实上它会重复很多次,可以用 static AtomicInteger counter = new AtomicInteger(0) 来查看递归函数的调用总次数

事实上,可以用memoization来进行优化:

public static void print1(int n) {
    int[][] triangle = new int[n][];
    for (int i = 0; i < n; i++) {
        // 打印空格
        triangle[i] = new int[i + 1];
        for (int j = 0; j <= i; j++) {
            System.out.printf("%-4d", element1(triangle, i, j));
        }
        System.out.println();
    }
}

    /**
     * 使用动态规划计算三角形中从顶部到指定位置的路径数。
     * 动态规划的思想是利用已经计算过的结果来推导当前结果,避免重复计算。
     * 此方法采用二维数组来存储中间结果,以提高计算效率。
     * <h3>优化1 - 使用二维数组记忆法</h3>
     *
     * @param triangle 二维数组
     * @param i        行坐标
     * @param j        列坐标
     * @return 该坐标元素值
     */
    private static int element1(int[][] triangle, int i, int j) {
        // 检查当前位置的值是否已经计算过,如果大于0则直接返回该值。
        if (triangle[i][j] > 0) {
            return triangle[i][j];
        }

        // 处理边界情况:当列索引为0或与行索引相等时,只有一条路径可达,直接返回1。
        if (j == 0 || i == j) {
            triangle[i][j] = 1;
            return 1;
        }
        // 计算当前位置的路径数,它等于上方和左上方两个位置的路径数之和。
        triangle[i][j] = element1(triangle, i - 1, j - 1) + element1(triangle, i - 1, j);
        return triangle[i][j];
    }

优化2

public static void print2(int n) {
    int[] row = new int[n];
    for (int i = 0; i < n; i++) {
        // 打印空格
        createRow(row, i);
        for (int j = 0; j <= i; j++) {
            System.out.printf("%-4d", row[j]);
        }
        System.out.println();
    }
}

private static void createRow(int[] row, int i) {
    if (i == 0) {
        row[0] = 1;
        return;
    }
    for (int j = i; j > 0; j--) {
        row[j] = row[j - 1] + row[j];
    }
}

注意:还可以通过每一行的前一项计算出下一项,不必借助上一行,这与杨辉三角的另一个特性有关,暂不展开了

4. 递归优化-记忆法

上述代码存在很多重复的计算,例如求 f ( 5 ) f(5) f(5) 递归分解过程
在这里插入图片描述
可以看到(颜色相同的是重复的):

  • f ( 3 ) f(3) f(3) 重复了 2 次
  • f ( 2 ) f(2) f(2) 重复了 3 次
  • f ( 1 ) f(1) f(1) 重复了 5 次
  • f ( 0 ) f(0) f(0) 重复了 3 次

随着 n n n 的增大,重复次数非常可观,如何优化呢?

Memoization 记忆法(也称备忘录)是一种优化技术,通过存储函数调用结果(通常比较昂贵),当再次出现相同的输入(子问题)时,就能实现加速效果,改进后的代码

public static void main(String[] args) {
    int n = 13;
    int[] cache = new int[n + 1];
    Arrays.fill(cache, -1);
    cache[0] = 0;
    cache[1] = 1;
    System.out.println(f(cache, n));
}

public static int f(int[] cache, int n) {
    if (cache[n] != -1) {
        return cache[n];
    }

    cache[n] = f(cache, n - 1) + f(cache, n - 2);
    return cache[n];
}

优化后的图示,只要结果被缓存,就不会执行其子问题
在这里插入图片描述

  • 改进后的时间复杂度为 O ( n ) O(n) O(n)
  • 请自行验证改进后的效果
  • 请自行分析改进后的空间复杂度

注意

  1. 记忆法是动态规划的一种情况,强调的是自顶向下的解决
  2. 记忆法的本质是空间换时间

5. 递归优化-尾递归

爆栈
用递归做
n+(n−1)+(n−2)…+1

public static long sum(long n) {
    if (n == 1) {
        return 1;
    }
    return n + sum(n - 1);
}

在我的机器上 n = 12000 n = 12000 n=12000 时,爆栈了

Exception in thread "main" java.lang.StackOverflowError
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	...

为什么呢?

  • 每次方法调用是需要消耗一定的栈内存的,这些内存用来存储方法参数、方法内局部变量、返回地址等等
  • 方法调用占用的内存需要等到方法结束时才会释放
  • 而递归调用我们之前讲过,不到最深不会回头,最内层方法没完成之前,外层方法都结束不了
    • 例如, s u m ( 3 ) sum(3) sum(3) 这个方法内有个需要执行 3 + s u m ( 2 ) 3 + sum(2) 3+sum(2) s u m ( 2 ) sum(2) sum(2) 没返回前,加号前面的 3 3 3 不能释放
    • 看下面伪码
long sum(long n = 3) {
    return 3 + long sum(long n = 2) {
        return 2 + long sum(long n = 1) {
            return 1;
        }
    }
}

尾调用
如果函数的最后一步是调用一个函数,那么称为尾调用,例如

function a() {
    return b()
}

下面三段代码不能叫做尾调用

function a() {
    const c = b()
    return c
}

因为最后一步并非调用函数

function a() {
    return b() + 1
}

最后一步执行的是加法

function a(x) {
    return b() + x
}

● 最后一步执行的是加法

一些语言的编译器能够对尾调用做优化,例如

function a() {
    // 做前面的事
    return b() 
}

function b() {
    // 做前面的事
    return c()
}

function c() {
    return 1000
}

a()

没优化之前的伪码

function a() {
    return function b() {
        return function c() {
            return 1000
        }
    }
}

优化后伪码如下

a()
b()
c()

为何尾递归才能优化?

调用 a 时

● a 返回时发现:没什么可留给 b 的,将来返回的结果 b 提供就可以了,用不着我 a 了,我的内存就可以释放

调用 b 时

● b 返回时发现:没什么可留给 c 的,将来返回的结果 c 提供就可以了,用不着我 b 了,我的内存就可以释放

如果调用 a 时

● 不是尾调用,例如 return b() + 1,那么 a 就不能提前结束,因为它还得利用 b 的结果做加法

尾递归

尾递归是尾调用的一种特例,也就是最后一步执行的是同一个函数

尾递归避免爆栈

安装 Scala

在这里插入图片描述
Scala 入门

object Main {
  def main(args: Array[String]): Unit = {
    println("Hello Scala")
  }
}
  • Scala 是 java 的近亲,java 中的类都可以拿来重用
  • 类型是放在变量后面的
  • Unit 表示无返回值,类似于 void
  • 不需要以分号作为结尾,当然加上也对

还是先写一个会爆栈的函数

def sum(n: Long): Long = {
    if (n == 1) {
        return 1
    }
    return n + sum(n - 1)
}
  • Scala 最后一行代码若作为返回值,可以省略 return

不出所料,在 n = 11000 n = 11000 n=11000 时,还是出了异常

println(sum(11000))

Exception in thread "main" java.lang.StackOverflowError
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	...

这是因为以上代码,还不是尾调用,要想成为尾调用,那么:

  1. 最后一行代码,必须是一次函数调用
  2. 内层函数必须摆脱与外层函数的关系,内层函数执行后不依赖于外层的变量或常量
def sum(n: Long): Long = {
    if (n == 1) {
        return 1
    }
    return n + sum(n - 1)  // 依赖于外层函数的 n 变量
}

如何让它执行后就摆脱对 n 的依赖呢?

  • 不能等递归回来再做加法,那样就必须保留外层的 n
  • 把 n 当做内层函数的一个参数传进去,这时 n 就属于内层函数了
  • 传参时就完成累加, 不必等回来时累加
sum(n - 1, n + 累加器)

改写后代码如下

@tailrec
def sum(n: Long, accumulator: Long): Long = {
    if (n == 1) {
        return 1 + accumulator
    } 
    return sum(n - 1, n + accumulator)
}
  • accumulator 作为累加器
  • @tailrec 注解是 scala 提供的,用来检查方法是否符合尾递归
  • 这回 sum(10000000, 0) 也没有问题,打印 50000005000000

执行流程如下,以伪码表示 s u m ( 4 , 0 ) sum(4, 0) sum(4,0)

// 首次调用
def sum(n = 4, accumulator = 0): Long = {
    return sum(4 - 1, 4 + accumulator)
}

// 接下来调用内层 sum, 传参时就完成了累加, 不必等回来时累加,当内层 sum 调用后,外层 sum 空间没必要保留
def sum(n = 3, accumulator = 4): Long = {
    return sum(3 - 1, 3 + accumulator)
}

// 继续调用内层 sum
def sum(n = 2, accumulator = 7): Long = {
    return sum(2 - 1, 2 + accumulator)
}

// 继续调用内层 sum, 这是最后的 sum 调用完就返回最后结果 10, 前面所有其它 sum 的空间早已释放
def sum(n = 1, accumulator = 9): Long = {
    if (1 == 1) {
        return 1 + accumulator
    }
}

本质上,尾递归优化是将函数的递归调用,变成了函数的循环调用

改循环避免爆栈

public static void main(String[] args) {
    long n = 100000000;
    long sum = 0;
    for (long i = n; i >= 1; i--) {
        sum += i;
    }
    System.out.println(sum);
}

6. 递归时间复杂度-Master theorem

若有递归式

T ( n ) = a T ( n b ) + f ( n ) T(n) = aT(\frac{n}{b}) + f(n) T(n)=aT(bn)+f(n)

其中

  • T ( n ) T(n) T(n) 是问题的运行时间, n n n 是数据规模
  • a a a 是子问题个数
  • T ( n b ) T(\frac{n}{b}) T(bn) 是子问题运行时间,每个子问题被拆成原问题数据规模的 n b \frac{n}{b} bn
  • f ( n ) f(n) f(n) 是除递归外执行的计算

x = log ⁡ b a x = \log_{b}{a} x=logba,即 x = log ⁡ 子问题缩小倍数 子问题个数 x = \log_{子问题缩小倍数}{子问题个数} x=log子问题缩小倍数子问题个数

那么

T ( n ) = { Θ ( n x ) f ( n ) = O ( n c ) 并且 c < x Θ ( n x log ⁡ n ) f ( n ) = Θ ( n x ) Θ ( n c ) f ( n ) = Ω ( n c ) 并且 c > x T(n) = \begin{cases} \Theta(n^x) & f(n) = O(n^c) 并且 c \lt x\\ \Theta(n^x\log{n}) & f(n) = \Theta(n^x)\\ \Theta(n^c) & f(n) = \Omega(n^c) 并且 c \gt x \end{cases} T(n)= Θ(nx)Θ(nxlogn)Θ(nc)f(n)=O(nc)并且c<xf(n)=Θ(nx)f(n)=Ω(nc)并且c>x

例1

T ( n ) = 2 T ( n 2 ) + n 4 T(n) = 2T(\frac{n}{2}) + n^4 T(n)=2T(2n)+n4

  • 此时 x = 1 < 4 x = 1 < 4 x=1<4,由后者决定整个时间复杂度 Θ ( n 4 ) \Theta(n^4) Θ(n4)
  • 如果觉得对数不好算,可以换为求【 b b b 的几次方能等于 a a a

例2

T ( n ) = T ( 7 n 10 ) + n T(n) = T(\frac{7n}{10}) + n T(n)=T(107n)+n

  • a = 1 , b = 10 7 , x = 0 , c = 1 a=1, b=\frac{10}{7}, x=0, c=1 a=1,b=710,x=0,c=1
  • 此时 x = 0 < 1 x = 0 < 1 x=0<1,由后者决定整个时间复杂度 Θ ( n ) \Theta(n) Θ(n)

例3

T ( n ) = 16 T ( n 4 ) + n 2 T(n) = 16T(\frac{n}{4}) + n^2 T(n)=16T(4n)+n2

  • a = 16 , b = 4 , x = 2 , c = 2 a=16, b=4, x=2, c=2 a=16,b=4,x=2,c=2
  • 此时 x = 2 = c x=2 = c x=2=c,时间复杂度 Θ ( n 2 log ⁡ n ) \Theta(n^2 \log{n}) Θ(n2logn)

例4

T ( n ) = 7 T ( n 3 ) + n 2 T(n)=7T(\frac{n}{3}) + n^2 T(n)=7T(3n)+n2

  • a = 7 , b = 3 , x = 1. ? , c = 2 a=7, b=3, x=1.?, c=2 a=7,b=3,x=1.?,c=2
  • 此时 x = log ⁡ 3 7 < 2 x = \log_{3}{7} < 2 x=log37<2,由后者决定整个时间复杂度 Θ ( n 2 ) \Theta(n^2) Θ(n2)

例5

T ( n ) = 7 T ( n 2 ) + n 2 T(n) = 7T(\frac{n}{2}) + n^2 T(n)=7T(2n)+n2

  • a = 7 , b = 2 , x = 2. ? , c = 2 a=7, b=2, x=2.?, c=2 a=7,b=2,x=2.?,c=2
  • 此时 x = l o g 2 7 > 2 x = log_2{7} > 2 x=log27>2,由前者决定整个时间复杂度 Θ ( n log ⁡ 2 7 ) \Theta(n^{\log_2{7}}) Θ(nlog27)

例6

T ( n ) = 2 T ( n 4 ) + n T(n) = 2T(\frac{n}{4}) + \sqrt{n} T(n)=2T(4n)+n

  • a = 2 , b = 4 , x = 0.5 , c = 0.5 a=2, b=4, x = 0.5, c=0.5 a=2,b=4,x=0.5,c=0.5
  • 此时 x = 0.5 = c x = 0.5 = c x=0.5=c,时间复杂度 Θ ( n   log ⁡ n ) \Theta(\sqrt{n}\ \log{n}) Θ(n  logn)

例7. 二分查找递归

int f(int[] a, int target, int i, int j) {
    if (i > j) {
        return -1;
    }
    int m = (i + j) >>> 1;
    if (target < a[m]) {
        return f(a, target, i, m - 1);
    } else if (a[m] < target) {
        return f(a, target, m + 1, j);
    } else {
        return m;
    }
}
  • 子问题个数 a = 1 a = 1 a=1
  • 子问题数据规模缩小倍数 b = 2 b = 2 b=2
  • 除递归外执行的计算是常数级 c = 0 c=0 c=0

T ( n ) = T ( n 2 ) + n 0 T(n) = T(\frac{n}{2}) + n^0 T(n)=T(2n)+n0

  • 此时 x = 0 = c x=0 = c x=0=c,时间复杂度 Θ ( log ⁡ n ) \Theta(\log{n}) Θ(logn)

例8. 归并排序递归

void split(B[], i, j, A[])
{
    if (j - i <= 1)                    
        return;                                
    m = (i + j) / 2;             
    
    // 递归
    split(A, i, m, B);  
    split(A, m, j, B); 
    
    // 合并
    merge(B, i, m, j, A);
}
  • 子问题个数 a = 2 a=2 a=2
  • 子问题数据规模缩小倍数 b = 2 b=2 b=2
  • 除递归外,主要时间花在合并上,它可以用 f ( n ) = n f(n) = n f(n)=n 表示

T ( n ) = 2 T ( n 2 ) + n T(n) = 2T(\frac{n}{2}) + n T(n)=2T(2n)+n

  • 此时 x = 1 = c x=1=c x=1=c,时间复杂度 Θ ( n log ⁡ n ) \Theta(n\log{n}) Θ(nlogn)

例9. 快速排序递归

algorithm quicksort(A, lo, hi) is 
  if lo >= hi || lo < 0 then 
    return
  
  // 分区
  p := partition(A, lo, hi) 
  
  // 递归
  quicksort(A, lo, p - 1) 
  quicksort(A, p + 1, hi)
  • 子问题个数 a = 2 a=2 a=2
  • 子问题数据规模缩小倍数
    • 如果分区分的好, b = 2 b=2 b=2
    • 如果分区没分好,例如分区1 的数据是 0,分区 2 的数据是 n − 1 n-1 n1
  • 除递归外,主要时间花在分区上,它可以用 f ( n ) = n f(n) = n f(n)=n 表示

情况1 - 分区分的好

T ( n ) = 2 T ( n 2 ) + n T(n) = 2T(\frac{n}{2}) + n T(n)=2T(2n)+n

  • 此时 x = 1 = c x=1=c x=1=c,时间复杂度 Θ ( n log ⁡ n ) \Theta(n\log{n}) Θ(nlogn)

情况2 - 分区没分好

T ( n ) = T ( n − 1 ) + T ( 1 ) + n T(n) = T(n-1) + T(1) + n T(n)=T(n1)+T(1)+n

  • 此时不能用主定理求解

7. 递归时间复杂度-展开求解

像下面的递归式,都不能用主定理求解

例1 - 递归求和

long sum(long n) {
    if (n == 1) {
        return 1;
    }
    return n + sum(n - 1);
}

T ( n ) = T ( n − 1 ) + c T(n) = T(n-1) + c T(n)=T(n1)+c T ( 1 ) = c T(1) = c T(1)=c

下面为展开过程

T ( n ) = T ( n − 2 ) + c + c T(n) = T(n-2) + c + c T(n)=T(n2)+c+c

T ( n ) = T ( n − 3 ) + c + c + c T(n) = T(n-3) + c + c + c T(n)=T(n3)+c+c+c

T ( n ) = T ( n − ( n − 1 ) ) + ( n − 1 ) c T(n) = T(n-(n-1)) + (n-1)c T(n)=T(n(n1))+(n1)c

  • 其中 T ( n − ( n − 1 ) ) T(n-(n-1)) T(n(n1)) T ( 1 ) T(1) T(1)
  • 带入求得 T ( n ) = c + ( n − 1 ) c = n c T(n) = c + (n-1)c = nc T(n)=c+(n1)c=nc

时间复杂度为 O ( n ) O(n) O(n)

例2 - 递归冒泡排序

void bubble(int[] a, int high) {
    if(0 == high) {
        return;
    }
    for (int i = 0; i < high; i++) {
        if (a[i] > a[i + 1]) {
            swap(a, i, i + 1);
        }
    }
    bubble(a, high - 1);
}

T ( n ) = T ( n − 1 ) + n T(n) = T(n-1) + n T(n)=T(n1)+n T ( 1 ) = c T(1) = c T(1)=c

下面为展开过程

T ( n ) = T ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-2) + (n-1) + n T(n)=T(n2)+(n1)+n

T ( n ) = T ( n − 3 ) + ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-3) + (n-2) + (n-1) + n T(n)=T(n3)+(n2)+(n1)+n

T ( n ) = T ( 1 ) + 2 + . . . + n = T ( 1 ) + ( n − 1 ) 2 + n 2 = c + n 2 2 + n 2 − 1 T(n) = T(1) + 2 + ... + n = T(1) + (n-1)\frac{2+n}{2} = c + \frac{n^2}{2} + \frac{n}{2} -1 T(n)=T(1)+2+...+n=T(1)+(n1)22+n=c+2n2+2n1

时间复杂度 O ( n 2 ) O(n^2) O(n2)

例3 - 递归快排

快速排序分区没分好的极端情况

T ( n ) = T ( n − 1 ) + T ( 1 ) + n T(n) = T(n-1) + T(1) + n T(n)=T(n1)+T(1)+n T ( 1 ) = c T(1) = c T(1)=c

T ( n ) = T ( n − 1 ) + c + n T(n) = T(n-1) + c + n T(n)=T(n1)+c+n

下面为展开过程

T ( n ) = T ( n − 2 ) + c + ( n − 1 ) + c + n T(n) = T(n-2) + c + (n-1) + c + n T(n)=T(n2)+c+(n1)+c+n

T ( n ) = T ( n − 3 ) + c + ( n − 2 ) + c + ( n − 1 ) + c + n T(n) = T(n-3) + c + (n-2) + c + (n-1) + c + n T(n)=T(n3)+c+(n2)+c+(n1)+c+n

T ( n ) = T ( n − ( n − 1 ) ) + ( n − 1 ) c + 2 + . . . + n = n 2 2 + 2 c n + n 2 − 1 T(n) = T(n-(n-1)) + (n-1)c + 2+...+n = \frac{n^2}{2} + \frac{2cn+n}{2} -1 T(n)=T(n(n1))+(n1)c+2+...+n=2n2+22cn+n1

时间复杂度 O ( n 2 ) O(n^2) O(n2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/783606.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

codeforces 1633A

文章目录 1. 题目链接2. 题目代码正确代码错误代码 3. 题目总结 1. 题目链接 Div. 7 2. 题目代码 正确代码 #include<iostream> using namespace std; int main(){int testCase;cin >> testCase;while(testCase --){int ingeter;cin >> ingeter;if(!(inget…

Python: 分块读取文本文件

在处理大文件时&#xff0c;逐行或分块读取文件是很常见的需求。下面是几种常见的方法&#xff0c;用于在 Python 中分块读取文本文件&#xff1a; 1、问题背景 如何分块读取一个较大的文本文件&#xff0c;并提取出特定的信息&#xff1f; 问题描述: fopen(blank.txt,r) quot…

专家指南:如何为您的电路选择理想的压敏电阻或热敏电阻

保护和维持电路功能需要两种设备&#xff1a;压敏电阻和热敏电阻。这两个电气元件有时会因后缀相似而混淆&#xff0c;但它们具有不同且重要的用途。 由于这种混淆&#xff0c;我们需要准确地了解这些组件是什么&#xff0c;这就是本文将要讨论的内容——应用程序、作用、优点…

SAP 无权限的解决

在进行SAP操作过程中&#xff0c;经常会出现无权限的情况&#xff0c;如客户说没有“ABAAL计划外折旧”权限 但是在查看SU01的时候&#xff0c;已经有角色分配了 解决&#xff1a;1、ABAA之后&#xff0c;SU53查看2、 2、PFCG查找到角色手动添加权限对象S_TCODDE,之后更新&…

Jhipster实战中遇到的知识点-开发记录

利用Jhipster开发的网站天赋吉星终于上线啦&#xff0c;本文介绍了在开发过程中遇到的各种小的知识点和技巧&#xff0c;绝对干货&#xff0c;供你参考。大家可以直接点击天赋吉星&#xff0c;看到网站效果。 首先介绍一下项目技术选型&#xff0c;JHipster 版本:8.1.0, 项目类…

谷粒商城学习笔记-逆向工程错误记录

文章目录 1&#xff0c;Since Maven 3.8.1 http repositories are blocked.1.1 在maven的settings.xml文件中&#xff0c;新增如下配置&#xff1a;1.2&#xff0c;执行clean命令刷新maven配置 2&#xff0c;internal java compiler error3&#xff0c;启动逆向工程报错&#x…

Unity分享一个简单的3D角色漫游脚本

1.新建一个场景&#xff0c;并创建一脚本 2.给场景中的地面添加一个Ground标签 3.给刚刚新建的脚本编写代码 using UnityEngine;public class PlayerMovement : MonoBehaviour {public float moveSpeed 5f; // 移动速度public float jumpForce 5f; // 跳跃力量public float …

家里老人能操作的电视直播软件,目前能用的免费看直播的电视软件app,适合电视和手机使用!

2024年许多能看电视直播的软件都不能用了&#xff0c;家里的老人也不会手机投屏&#xff0c;平时什么娱乐都没有了&#xff0c;这真的太不方便了。 很多老人并不喜欢去买一个广电的机顶盒&#xff0c;或者花钱拉有线电视。 现在的电视大多数都是智能电视&#xff0c;所以许多电…

记录在Windows上安装Docker

在Windows上安装Docker时&#xff0c;可以选择使用不同的后端。 其中两个常见的选择是&#xff1a;WSL 2&#xff08;Windows Subsystem for Linux 2&#xff09;和 Hyper-V 后端。此外&#xff0c;还可以选择使用Windows容器。 三者的区别了解即可&#xff0c;推荐用WSL 2&…

驾校管理系统-计算机毕业设计源码49777

驾校管理系统 摘 要 驾校管理系统是一个基于Spring Boot框架开发的系统&#xff0c;旨在帮助驾校提高管理效率和服务水平。该系统主要实现了用户管理、年月类型管理、区域信息管理、驾校信息管理、车辆信息管理、报名信息管理、缴费信息管理、财务信息管理、教练分配管理、更换…

数字签密:信息安全的新防线

随着互联网的普及和数字技术的飞速发展&#xff0c;信息安全问题日益凸显。在这个背景下&#xff0c;数字签密技术应运而生&#xff0c;为保护信息安全提供了新的解决方案。本文将介绍数字签密的概念、原理及应用&#xff0c;探讨其在信息安全领域的重要性。 数字签密的概念 …

智慧矿山:EasyCVR助力矿井视频多业务融合及视频转发服务建设

一、方案背景 随着矿井安全生产要求的不断提高&#xff0c;视频监控、数据传输、通讯联络等业务的需求日益增长。为满足矿井生产管理的多元化需求&#xff0c;提高矿井作业的安全性和效率&#xff0c;TSINGSEE青犀EasyCVR视频汇聚/安防监控综合管理平台&#xff0c;旨在构建一…

Spring学习05-[AOP学习-AOP原理和事务]

AOP原理和事务 AOPAOP底层原理比如下面的代码案例手动模拟AOP 动态代理详解JDK动态代理具体实现 Cglib动态代理具体实现 jdk动态代理和cglib动态代理的区别 事务 AOP AOP底层原理 当实现了AOP,Spring会根据当前的bean创建动态代理(运行时生成一个代理类) 面试题&#xff1a;为…

JAVA之(static关键字、final关键字)

JAVA之&#xff08;static关键字、final关键字&#xff09; 一、 static关键字1、静态变量2、静态方法3、 静态代码块4、例子 二、final关键字1、final修饰类2、 final修饰方法3、修饰变量 一、 static关键字 1、静态变量 private static String str1“staticProperty”2、静…

适合中小企业的MES管理系统有哪些特点

在当今竞争激烈的商业环境中&#xff0c;中小企业对于高效、灵活的生产管理系统的需求日益凸显。面对这些企业的MES管理系统不仅成为监控生产过程的得力助手&#xff0c;还通过提供关键数据&#xff0c;构建起客户期望与制造车间实时订单状态之间的紧密桥梁&#xff0c;以下是对…

Vue3使用markdown编辑器之Bytemd

官网地址&#xff1a;https://bytemd.js.org/playground GitHub地址&#xff1a;https://github.com/bytedance/bytemd ByteMD 是字节跳动出品的富文本编辑器&#xff0c;功能强大&#xff0c;可以免费使用&#xff0c;而且支持很多掘金内置的主题&#xff0c;写作体验很棒。 …

【Unity2D 2022:Particle System】添加拾取粒子特效

一、创建粒子特效游戏物体 二、修改粒子系统属性 1. 基础属性 &#xff08;1&#xff09;修改发射粒子持续时间&#xff08;Duration&#xff09;为3s &#xff08;2&#xff09;取消勾选循环&#xff08;Looping&#xff09; &#xff08;2&#xff09;修改粒子存在时间&…

星网安全产品线成立 引领卫星互联网解决方案创新

2024年6月12日&#xff0c;盛邦安全&#xff08;688651&#xff09;成立星网安全产品线&#xff0c;这是公司宣布全面进入以场景化安全、网络空间地图和卫星互联网安全三大核心能力驱动的战略2.0时代业务落地的重要举措。 卫星互联网技术的快速发展&#xff0c;正将其塑造为全球…

leetcode:编程基础0到1

文章目录 交替合并字符串str.length();StringBuilder类型 ,toString()append() &#xff0c;chatAt()题目描述 交替合并字符串 str.length(); 输出字符串str的长度 StringBuilder类型 ,toString() append() &#xff0c;chatAt() 题目描述 class Solution {public String …

(译文)IRIG-B对时编码快速入门

原文 PDF&#xff1a;https://ww1.microchip.com/downloads/aemDocuments/documents/FTD/tekron/tekronwhitepapers/221223-A-guide-to-IRIG-B.pdf IRIG-B3 概论 Inter-Range Instrument Group 时间码&#xff08;简称IRIG&#xff09;是一系列标准时间码格式。用于将时间信…