基于模型预测控制的PMSM系统速度环控制理论推导及仿真搭建

模型预测控制(Model Predictive Control, MPC)是一种先进的控制策略,广泛应用于工业控制中。它可以看作是一种最优控制方法,利用对象的动态模型来预测其状态的未来行为,并根据每个采样时间点特定性能目标函数的优化来确定未来的控制动作。MPC方法具有鲁棒性、建模简单、处理多变量系统、显示约束、预测未来行为和优化性能的能力等优势。它的不足在于预测控制行为的计算需要繁琐的计算量,因为它需要在每个采样时刻求解优化问题,在线优化的耗时时间在一定程度上限制了MPC方法在高实时性工业级的应用。然而,随着计算机硬件和凸优化技术的进行,对于具有高实时性要求的快速变化动态系统,实现这些较复杂控制器已成为可能。而将MPC方法应用于PMSM伺服系统的一个重要原因是其线性模型可以通过解析方法和辨识技术获得。

基本概念

MPC的主要步骤包括:

  1. 模型预测:使用系统的数学模型预测未来的输出。
  2. 滚动优化:在每个控制周期内,求解一个优化问题,找到最佳的控制序列。
  3. 反馈修正:每个周期只实施第一个控制输入,然后重新测量系统状态并重复这个过程。

优化问题的形式

在每个控制周期,MPC通过解决如下优化问题来计算控制

\min _u\sum_{k=0}^{N-1}{\left( y\left( k \right) -r\left( k \right) \right) ^TQ\left( y\left( k \right) -r\left( k \right) \right) +u\left( k \right) ^TPu\left( k \right)}

  • u是系统输入
  • y是系统输出
  • r是参考轨迹(指令)
  • QP是权重矩阵,用于平衡系统性能和控制输入的大小
  • N是预测时域的长度

以PMSM系统为例讲解MPC在其速度环的应用

A 电机速度环一阶模型

这里我们考虑一个典型的伺服系统,以表贴式永磁同步电机为例:

\dot{\omega}_m=\frac{1}{J_m}\left( k_fi_q-B_m\omega _m-T_L \right)

  • \omega _m是电机的角速度,可以理解为系统的输出,\dot{\omega}_m是电机速度的一阶导数,即加速度
  • J_m是电机的转动惯量
  • k_f是电机的力矩系数
  • i_q是电机的q轴电流,可以理解为系统的输入
  • B_m为电机的粘滞摩擦系数
  • T_L为负载力矩

B 状态空间模型

首先,我们将方程转换为状态空间形式。定义状态变量x=\omega _m和输入u=i_q,则状态空间方程可以写成:

\dot{x}=\frac{k_f}{J_m}u-\frac{B_m}{J_m}x

离散化后(采样时间为T_s):

x\left[ k+1 \right] =A_dx\left[ k \right] +B_du\left[ k \right]

其中:A_d=1-\frac{B_mT_s}{J_m}B_d=\frac{k_fT_s}{J_m}

C 预测模型

构建预测模型,用于MPC控制,预测模型为:

\left\{ \begin{array}{l} x_{k+1}=A_dx_k+B_du_k\\ y_{k+1}=C_dx_{k+1}\\ \end{array} \right.

下一时刻预测输出,即第二步预测:

\left\{ \begin{array}{l} x_{k+2}=A_d^2x_k+A_dB_du_k+B_du_k\\ y_{k+2}=C_dx_{k+2}\\ \end{array} \right.

第三步预测:

\left\{ \begin{array}{l} x_{k+3}=A_d^3x_k+A_d^2B_du_k+A_dB_du_{k+1}+B_du_{k+2}\\ y_{k+3}=C_dx_{k+3}\\ \end{array} \right.

......

N_p步预测

\left\{ \begin{array}{l} x_{k+N_p}=A_d^{N_p}x_k+A_d^{N_p-1}B_du_k+\cdots +\sum_{i=0}^{N_p-N_c}{A_d^iB_du_{k+N_c-1}}\\ y_{k+N_p}=C_dx_{k+N_p}\\ \end{array} \right.

其中N_p是预测步长,N_c是控制步长

        定义预测输出序列Y、控制输入序列U如下:

Y=\varPhi x_k+\varGamma U

其中,\varPhi =\left[ \begin{matrix} C_dA_d& C_dA_d^2& \cdots& C_dA_d^{N_p}\\ \end{matrix} \right]\varGamma =\left[ \begin{matrix} C_dB_d& 0& \cdots& 0\\ C_dA_dB_d& C_dB_d& \cdots& 0\\ \vdots& \vdots& \vdots& \vdots\\ C_dA_d^{N_p-1}& C_dA_d^{N_p-2}B_d& \cdots& C_dB_d\\ \end{matrix} \right]

参考信号序列:

R=\left[ \begin{matrix} r_k& r_{k+1}& \cdots& r_{k+N_{p-1}}\\ \end{matrix} \right]

因此代价函数被设计如下:

J=\left( \varPhi x_k+\varGamma U-R \right) ^TQ\left( \varPhi x_k+\varGamma U-R \right) +U^TPU

简化后可以得到标准的二次型优化问题:

J=U^T\left( \varGamma ^TQ\varGamma +R \right) U+2\left( \varPhi x_k-R \right) ^TQ\varGamma U+\left( \varPhi x_k-R \right) ^TQ\left( \varPhi x_k-R \right)

为了最小化该二次型代价函数,我们需要解以下优化问题:

J_{\min}=\frac{1}{2}U^THU+F^TU

其中,H=\varGamma ^TQ\varGamma +R,F=\varGamma ^TQ\left( \varPhi x_k-R \right)

求解这个二次型优化问题,我们可以通过求解以下线性方程组来得到最优解:

HU=-F

因此,控制输入向量U的数学表达式为:

U=-H^{-1}F

最终得到最优的虚拟控制序列:

U^*=\left[ \begin{matrix} u^*_k& u^*_{k+1}& \cdots& u^*_{k+N_p-1}\\ \end{matrix} \right]

取第一个值作为系统的输入。

仿真搭建

电机参数设置

  • J_m------7.06e-4
  • B_m------3.5e-4
  • 极对数n_p------4
  • 力矩系数k_f------0.0064*4
  • 电感L------0.4e-3
  • 电阻R------0.72
  • 采样时间T_s------0.001
  • 预测步数N_p------7,控制步数N_c------5

仿真结果

为了方便迭代,速度控制器采用MATLAB Function模块编写。

响应速度为:0.024s且几乎无超调

在0.5s时刻加载,T_L=2.4

由上图可看出,MPC控制器的抗干扰性能强,

与PI控制器对比:

MPC的表现明显优于传统PI控制器,且无需漫长的参数试凑调参,就能达到一个比较好的控制效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/781021.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

单片机软件架构连载(3)-typedef

今天给大家讲typedef,这个关键字在实际产品开发中,也是海量应用。 技术涉及知识点比较多,有些并不常用,我们以贴近实际为原则,让大家把学习时间都花在重点上。 1.typedef的概念 typedef 是 C 语言中的一个关键字&…

java wait, notify, notifyAll三个方法

wait(), notify(), 和 notifyAll() 是 Java 中用于线程间通信和同步的方法,它们都是 Object 类中的方法,而非 Thread 类的方法。这些方法通常与 synchronized 关键字一起使用,用于实现线程之间的协作和互斥访问共享资源。 关于生产者-消…

Apache Seata配置管理原理解析

本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 Apache Seata配置管理原理解析 说到Seata中的配置管理,大家可能会想到Seata中适配…

传统IO和NIO文件拷贝过程

参考:https://blog.csdn.net/weixin_57323780/article/details/130250582

几个小创新模型,KAN组合网络(LSTM、GRU、Transformer)回归预测,python预测全家桶再更新!...

截止到本期,一共发了9篇关于机器学习预测全家桶Python代码的文章。参考往期文章如下: 1.终于来了!python机器学习预测全家桶 2.机器学习预测全家桶-Python,一次性搞定多/单特征输入,多/单步预测!最强模板&a…

【网络安全】实验三(基于Windows部署CA)

一、配置环境 打开两台虚拟机,并参照下图,搭建网络拓扑环境,要求两台虚拟的IP地址要按照图中的标识进行设置,并根据搭建完成情况,勾选对应选项。注:此处的学号本人学号的最后两位数字,1学号100…

《python程序语言设计》2018版第5章第52题利用turtle绘制sin函数

这道题是送分题。因为循环方式已经写到很清楚,大家照抄就可以了。 但是如果说光照抄可是会有问题。比如我们来演示一下。 import turtleturtle.penup() turtle.goto(-175, 50 * math.sin((-175 / 100 * 2 * math.pi))) turtle.pendown() for x in range(-175, 176…

k8s学习之cobra命令库学习

1.前言 打开k8s代码的时候,我发现基本上那几个核心服务都是使用cobra库作为命令行处理的能力。因此,为了对代码之后的代码学习的有比较深入的理解,因此先基于这个库写个demo,加深对这个库的一些理解吧 2.cobra库的基本简介 Git…

算法设计与分析 实验5 并查集法求图论桥问题

目录 一、实验目的 二、问题描述 三、实验要求 四、实验内容 (一)基准算法 (二)高效算法 五、实验结论 一、实验目的 1. 掌握图的连通性。 2. 掌握并查集的基本原理和应用。 二、问题描述 在图论中,一条边被称…

IDEA发疯导致maven下载回来的jar不完整zip END header not found

IDEA发疯导致maven下载回来的jar不完整zip END header not found 具体报错 java: 读取D:\mavenRepository\com\alibaba\druid-spring-boot-starter\1.2.23\druid-spring-boot-starter-1.2.23.jar时出错; zip END header not foundjava: java.lang.RuntimeException: java.io.…

Python视觉轨迹几何惯性单元超维计算结构算法

🎯要点 🎯视觉轨迹几何惯性单元超维计算结构算法 | 🎯超维计算结构视觉场景理解 | 🎯超维计算结构算法解瑞文矩阵 | 🎯超维矢量计算递归神经算法 🍪语言内容分比 🍇Python蒙特卡罗惯性导航 蒙…

【感谢告知】本账号内容调整,聚焦于Google账号和产品的使用经验和问题案例分析

亲爱的各位朋友: 感谢您对本账号的关注和支持! 基于对朋友们需求的分析和个人兴趣的转变,该账号从今天将对内容做一些调整,有原来的内容改为Google(谷歌)账号和产品的使用经验,以及相关问题的…

LeetCode 744, 49, 207

目录 744. 寻找比目标字母大的最小字母题目链接标签思路代码 49. 字母异位词分组题目链接标签思路代码 207. 课程表题目链接标签思路代码 744. 寻找比目标字母大的最小字母 题目链接 744. 寻找比目标字母大的最小字母 标签 数组 二分查找 思路 本题比 基础二分查找 难的一…

《python程序语言设计》2018版第5章第53题利用turtle绘制sin和cos函数 sin蓝色,cos红色和52题类似

直接上题和代码 5.53 (Turtle:绘制sin和cos函数)编写程序绘制蓝色的sin函数和红色的cos函数。 代码和结果 turtle.speed(10) turtle.penup() # sin 用蓝色 turtle.color("blue") #这道题和上道题一样,先把turtle放到起始…

pandas读取CSV格式文件生成数据发生器iteration

背景 数据集标签为csv文件格式,有三个字段column_hander [‘id’, ‘boneage’, ‘male’],需要自己定义数据集。文件较大,做一个数据发生器迭代更新数据集。 实现模板 在Pandas中,可以使用pandas.read_csv函数读取CSV文件&…

官网首屏:激发你的小宇宙和第六感,为了漂亮,干就完了。

官网的首屏是指用户打开网站后首先看到的页面,通常是整个网站最重要的一部分。首屏的设计和内容对于吸引用户的注意力、传达品牌形象和价值、促使用户继续浏览和进行交互非常关键。以下是官网首屏的重要性的几个方面: 1. 第一印象: 首屏是用…

Redis官方可视化管理工具

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl RedisInsight是一个Redis可视化工具,提供设计、开发和优化 Redis 应用程序的功能。RedisInsight分为免费的社区版和一个付费的企业版,免费版具有基本…

文心一言 VS 讯飞星火 VS chatgpt (297)-- 算法导论22.1 1题

一、给定有向图的邻接链表,需要多长时间才能计算出每个结点的出度(发出的边的条数)?多长时间才能计算出每个结点的入度(进入的边的条数)?如果要写代码,请用go语言。 文心一言: 计算出度 对于有向图的邻接链表表示&a…

C++ 引用——常量引用

作用:常量引用主要用来修饰形参,防止误操作 在函数形参列表中,可以加const修饰形参,防止形参改变实参 示例: 运行结果:

【Linux】进程优先级 + 环境变量

前言 在了解进程状态之后,本章我们将来学习一下进程优先级,还有环境变量等。。 目录 1.进程优先级1.1 为什么要有优先级? 2.进程的其他概念2.1 竞争性与独立性2.2 并行与并发2.3 进程间优先级的体现:2.3.1 O(1) 调度算法&#xf…