昇思25天学习打卡营第12天|简单的深度学习ResNet50图像分类 - 构建ResNet50网络

ResNet主要解决深度卷积网络在深度加深时候的“退化”问题。在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题Szegedy提出BN层后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。但是作者发现加了BN后再加大深度仍然不容易收敛,其提到了第二个问题–准确率下降问题:层级大到一定程度时准确率就会饱和,然后迅速下降,这种下降即不是梯度消失引起的也不是过拟合造成的,而是由于网络过于复杂,以至于光靠不加约束的放养式的训练很难达到理想的错误率。

准确率下降问题不是网络结构本身的问题,而是现有的训练方式不够理想造成的。当前广泛使用的优化器,无论是SGD,还是RMSProp,或是Adam,都无法在网络深度变大后达到理论上最优的收敛结果。

只要有合适的网络结构,更深的网络肯定会比较浅的网络效果要好。证明过程也很简单:假设在一种网络A的后面添加几层形成新的网络B,如果增加的层级只是对A的输出做了个恒等映射(identity mapping),即A的输出经过新增的层级变成B的输出后没有发生变化,这样网络A和网络B的错误率就是相等的,也就证明了加深后的网络不会比加深前的网络效果差。


ResNet50图像分类

图像分类是最基础的计算机视觉应用,属于有监督学习类别,如给定一张图像(猫、狗、飞机、汽车等等),判断图像所属的类别。本章将介绍使用ResNet50网络对CIFAR-10数据集进行分类。

ResNet网络介绍

ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。

resnet-1

ResNet网络提出了残差网络结构(Residual Network)来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。论文中使用ResNet网络在CIFAR-10数据集上的训练误差与测试误差图如下图所示,图中虚线表示训练误差,实线表示测试误差。由图中数据可以看出,ResNet网络层数越深,其训练误差和测试误差越小。

resnet-4

数据集准备与加载

CIFAR-10数据集共有60000张32*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片。首先,如下示例使用download接口下载并解压,目前仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
# 查看当前 mindspore 版本
!pip show mindspore
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"

download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)
from download import download
​
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"
​
download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)

‘./datasets-cifar10-bin’
下载后的数据集目录结构如下:

datasets-cifar10-bin/cifar-10-batches-bin
├── batches.meta.text
├── data_batch_1.bin
├── data_batch_2.bin
├── data_batch_3.bin
├── data_batch_4.bin
├── data_batch_5.bin
├── readme.html
└── test_batch.bin

在这里插入图片描述

然后,使用mindspore.dataset.Cifar10Dataset接口来加载数据集,并进行相关图像增强操作。

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstype

data_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 256  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 4  # 并行线程个数
num_classes = 10  # 分类数量

def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):

    data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,
                                 usage=usage,
                                 num_parallel_workers=workers,
                                 shuffle=True)

    trans = []
    if usage == "train":
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]

    trans += [
        vision.Resize(resize),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]

    target_trans = transforms.TypeCast(mstype.int32)

    # 数据映射操作
    data_set = data_set.map(operations=trans,
                            input_columns='image',
                            num_parallel_workers=workers)

    data_set = data_set.map(operations=target_trans,
                            input_columns='label',
                            num_parallel_workers=workers)

    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


# 获取处理后的训练与测试数据集

dataset_train = create_dataset_cifar10(dataset_dir=data_dir,
                                       usage="train",
                                       resize=image_size,
                                       batch_size=batch_size,
                                       workers=workers)
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_cifar10(dataset_dir=data_dir,
                                     usage="test",
                                     resize=image_size,
                                     batch_size=batch_size,
                                     workers=workers)
step_size_val = dataset_val.get_dataset_size()
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstype
​
data_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 256  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 4  # 并行线程个数
num_classes = 10  # 分类数量
​
​
def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):
​
    data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,
                                 usage=usage,
                                 num_parallel_workers=workers,
                                 shuffle=True)
​
    trans = []
    if usage == "train":
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]
​
    trans += [
        vision.Resize(resize),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]
​
    target_trans = transforms.TypeCast(mstype.int32)
​
    # 数据映射操作
    data_set = data_set.map(operations=trans,
                            input_columns='image',
                            num_parallel_workers=workers)
​
    data_set = data_set.map(operations=target_trans,
                            input_columns='label',
                            num_parallel_workers=workers)
​
    # 批量操作
    data_set = data_set.batch(batch_size)
​
    return data_set
​
​
# 获取处理后的训练与测试数据集
​
dataset_train = create_dataset_cifar10(dataset_dir=data_dir,
                                       usage="train",
                                       resize=image_size,
                                       batch_size=batch_size,
                                       workers=workers)
step_size_train = dataset_train.get_dataset_size()
​
dataset_val = create_dataset_cifar10(dataset_dir=data_dir,
                                     usage="test",
                                     resize=image_size,
                                     batch_size=batch_size,
                                     workers=workers)
step_size_val = dataset_val.get_dataset_size()

对CIFAR-10训练数据集进行可视化。


import matplotlib.pyplot as plt
import numpy as np

data_iter = next(dataset_train.create_dict_iterator())

images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")

# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")

在这里插入图片描述

classes = []

with open(data_dir + "/batches.meta.txt", "r") as f:
    for line in f:
        line = line.rstrip()
        if line:
            classes.append(line)

# 训练数据集的前六张图片
plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    image_trans = np.transpose(images[i], (1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    image_trans = std * image_trans + mean
    image_trans = np.clip(image_trans, 0, 1)
    plt.title(f"{classes[labels[i]]}")
    plt.imshow(image_trans)
    plt.axis("off")
plt.show()
import matplotlib.pyplot as plt
import numpy as np
​
data_iter = next(dataset_train.create_dict_iterator())
​
images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")
​
# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")
​
classes = []with open(data_dir + "/batches.meta.txt", "r") as f:
    for line in f:
        line = line.rstrip()
        if line:
            classes.append(line)
​
# 训练数据集的前六张图片
plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    image_trans = np.transpose(images[i], (1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    image_trans = std * image_trans + mean
    image_trans = np.clip(image_trans, 0, 1)
    plt.title(f"{classes[labels[i]]}")
    plt.imshow(image_trans)
    plt.axis("off")
plt.show()

Image shape: (256, 3, 32, 32), Label shape: (256,)
Labels: [3 2 7 6 0 4]

构建网络

残差网络结构(Residual Network)是ResNet网络的主要亮点,ResNet使用残差网络结构后可有效地减轻退化问题,实现更深的网络结构设计,提高网络的训练精度。本节首先讲述如何构建残差网络结构,然后通过堆叠残差网络来构建ResNet50网络。

构建残差网络结构
残差网络结构图如下图所示,残差网络由两个分支构成:一个主分支,一个shortcuts(图中弧线表示)。主分支通过堆叠一系列的卷积操作得到,shotcuts从输入直接到输出,主分支输出的特征矩阵 𝐹(𝑥)
加上shortcuts输出的特征矩阵 𝑥 得到 𝐹(𝑥)+𝑥,通过Relu激活函数后即为残差网络最后的输出。

residual

残差网络结构主要由两种,一种是Building Block,适用于较浅的ResNet网络,如ResNet18和ResNet34;另一种是Bottleneck,适用于层数较深的ResNet网络,如ResNet50、ResNet101和ResNet152。

Building Block

Building Block结构图如下图所示,主分支有两层卷积网络结构:

主分支第一层网络以输入channel为64为例,首先通过一个 3×3
的卷积层,然后通过Batch Normalization层,最后通过Relu激活函数层,输出channel为64;
主分支第二层网络的输入channel为64,首先通过一个 3×3
的卷积层,然后通过Batch Normalization层,输出channel为64。
最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Building Block最后的输出。

building-block-5

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为 1×1的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride为2,主分支第一层卷积操作的stride也需设置为2。

如下代码定义ResidualBlockBase类实现Building Block结构。

from typing import Type, Union, List, Optional
import mindspore.nn as nn
from mindspore.common.initializer import Normal
​
# 初始化卷积层与BatchNorm的参数
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)
​
class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支
​
        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

Bottleneck

Bottleneck结构图如下图所示,在输入相同的情况下Bottleneck结构相对Building Block结构的参数数量更少,更适合层数较深的网络,ResNet50使用的残差结构就是Bottleneck。该结构的主分支有三层卷积结构,分别为 1×1
的卷积层、 3×3
卷积层和 1×1
的卷积层,其中 1×1
的卷积层分别起降维和升维的作用。

主分支第一层网络以输入channel为256为例,首先通过数量为64,大小为 1×1
的卷积核进行降维,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
主分支第二层网络通过数量为64,大小为 3×3
的卷积核提取特征,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
主分支第三层通过数量为256,大小 1×1
的卷积核进行升维,然后通过Batch Normalization层,其输出channel为256。
最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Bottleneck最后的输出。

building-block-6

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为 1×1
的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride为2,主分支第二层卷积操作的stride也需设置为2。

如下代码定义ResidualBlock类实现Bottleneck结构。

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍
​
    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()
​
        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)
​
        self.relu = nn.ReLU()
        self.down_sample = down_sample
​
    def construct(self, x):
​
        identity = x  # shortscuts分支
​
        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)
​
        if self.down_sample is not None:
            identity = self.down_sample(x)
​
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)
​
        return out

构建ResNet50网络

ResNet网络层结构如下图所示,以输入彩色图像 224×224为例,首先通过数量64,卷积核大小为 7×7,stride为2的卷积层conv1,该层输出图片大小为 112×112,输出channel为64;然后通过一个 3×3的最大下采样池化层,该层输出图片大小为 56×56,输出channel为64;再堆叠4个残差网络块(conv2_x、conv3_x、conv4_x和conv5_x),此时输出图片大小为 7×7,输出channel为2048;最后通过一个平均池化层、全连接层和softmax,得到分类概率。

对于每个残差网络块,以ResNet50网络中的conv2_x为例,其由3个Bottleneck结构堆叠而成,每个Bottleneck输入的channel为64,输出channel为256。

如下示例定义make_layer实现残差块的构建,其参数如下所示:

  • last_out_channel:上一个残差网络输出的通道数。
  • block:残差网络的类别,分别为ResidualBlockBase和ResidualBlock。
  • channel:残差网络输入的通道数。
  • block_nums:残差网络块堆叠的个数。
  • stride:卷积移动的步幅。
def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支
​
    if stride != 1 or last_out_channel != channel * block.expansion:
​
        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])
​
    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))
​
    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):
​
        layers.append(block(in_channel, channel))
​
    return nn.SequentialCell(layers)

ResNet50网络共有5个卷积结构,一个平均池化层,一个全连接层,以CIFAR-10数据集为例:

conv1:输入图片大小为 32×32,输入channel为3。首先经过一个卷积核数量为64,卷积核大小为 7×7,stride为2的卷积层;然后通过一个Batch Normalization层;最后通过Reul激活函数。该层输出feature map大小为 16×16 ,输出channel为64。

conv2_x:输入feature map大小为 16×16,输入channel为64。首先经过一个卷积核大小为 3×3,stride为2的最大下采样池化操作;然后堆叠3个 [1×1,64;3×3,64;1×1,256]结构的Bottleneck。该层输出feature map大小为 8×8,输出channel为256。

conv3_x:输入feature map大小为 8×8,输入channel为256。该层堆叠4个[1×1,128;3×3,128;1×1,512]结构的Bottleneck。该层输出feature map大小为 4×4,输出channel为512。

conv4_x:输入feature map大小为 4×4,输入channel为512。该层堆叠6个[1×1,256;3×3,256;1×1,1024]结构的Bottleneck。该层输出feature map大小为 2×2,输出channel为1024。

conv5_x:输入feature map大小为 2×2,输入channel为1024。该层堆叠3个[1×1,512;3×3,512;1×1,2048]结构的Bottleneck。该层输出feature map大小为 1×1 ,输出channel为2048。

average pool & fc:输入channel为2048,输出channel为分类的类别数。

如下示例代码实现ResNet50模型的构建,通过用调函数resnet50即可构建ResNet50模型,函数resnet50参数如下:

  • num_classes:分类的类别数,默认类别数为1000。
  • pretrained:下载对应的训练模型,并加载预训练模型中的参数到网络中。
from mindspore import load_checkpoint, load_param_into_net
​
​
class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()
​
        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)
​
    def construct(self, x):
​
        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)
​
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
​
        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)
​
        return x
def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrained_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)
​
    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrained_ckpt, replace=True)
        param_dict = load_checkpoint(pretrained_ckpt)
        load_param_into_net(model, param_dict)
​
    return model
​
​
def resnet50(num_classes: int = 1000, pretrained: bool = False):
    """ResNet50模型"""
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

在这里插入图片描述

模型训练与评估

本节使用ResNet50预训练模型进行微调。调用resnet50构造ResNet50模型,并设置pretrained参数为True,将会自动下载ResNet50预训练模型,并加载预训练模型中的参数到网络中。然后定义优化器和损失函数,逐个epoch打印训练的损失值和评估精度,并保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的./BestCheckPoint下。

由于预训练模型全连接层(fc)的输出大小(对应参数num_classes)为1000, 为了成功加载预训练权重,我们将模型的全连接输出大小设置为默认的1000。CIFAR10数据集共有10个分类,在使用该数据集进行训练时,需要将加载好预训练权重的模型全连接层输出大小重置为10。

此处我们展示了5个epochs的训练过程,如果想要达到理想的训练效果,建议训练80个epochs。

# 定义ResNet50网络
network = resnet50(pretrained=True)
​
# 全连接层输入层的大小
in_channel = network.fc.in_channels
fc = nn.Dense(in_channels=in_channel, out_channels=10)
# 重置全连接层
network.fc = fc
# 设置学习率
num_epochs = 5
lr = nn.cosine_decay_lr(min_lr=0.00001, max_lr=0.001, total_step=step_size_train * num_epochs,
                        step_per_epoch=step_size_train, decay_epoch=num_epochs)
# 定义优化器和损失函数
opt = nn.Momentum(params=network.trainable_params(), learning_rate=lr, momentum=0.9)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
​
​
def forward_fn(inputs, targets):
    logits = network(inputs)
    loss = loss_fn(logits, targets)
    return loss
​
​
grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)
​
​
def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss
import os
​
# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
​
# 最佳模型存储路径
best_acc = 0
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best.ckpt"
​
if not os.path.exists(best_ckpt_dir):
    os.mkdir(best_ckpt_dir)
import mindspore.ops as ops
​
​
def train(data_loader, epoch):
    """模型训练"""
    losses = []
    network.set_train(True)
​
    for i, (images, labels) in enumerate(data_loader):
        loss = train_step(images, labels)
        if i % 100 == 0 or i == step_size_train - 1:
            print('Epoch: [%3d/%3d], Steps: [%3d/%3d], Train Loss: [%5.3f]' %
                  (epoch + 1, num_epochs, i + 1, step_size_train, loss))
        losses.append(loss)
​
    return sum(losses) / len(losses)
​
​
def evaluate(data_loader):
    """模型验证"""
    network.set_train(False)
​
    correct_num = 0.0  # 预测正确个数
    total_num = 0.0  # 预测总数
​
    for images, labels in data_loader:
        logits = network(images)
        pred = logits.argmax(axis=1)  # 预测结果
        correct = ops.equal(pred, labels).reshape((-1, ))
        correct_num += correct.sum().asnumpy()
        total_num += correct.shape[0]
​
    acc = correct_num / total_num  # 准确率
​
    return acc
# 开始循环训练
print("Start Training Loop ...")
​
for epoch in range(num_epochs):
    curr_loss = train(data_loader_train, epoch)
    curr_acc = evaluate(data_loader_val)
​
    print("-" * 50)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, curr_loss, curr_acc
    ))
    print("-" * 50)
​
    # 保存当前预测准确率最高的模型
    if curr_acc > best_acc:
        best_acc = curr_acc
        ms.save_checkpoint(network, best_ckpt_path)
​
print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)
Start Training Loop ...
Epoch: [  1/  5], Steps: [  1/196], Train Loss: [2.389]
Epoch: [  1/  5], Steps: [101/196], Train Loss: [1.467]
Epoch: [  1/  5], Steps: [196/196], Train Loss: [1.093]
--------------------------------------------------
Epoch: [  1/  5], Average Train Loss: [1.641], Accuracy: [0.595]
--------------------------------------------------
Epoch: [  2/  5], Steps: [  1/196], Train Loss: [1.253]
Epoch: [  2/  5], Steps: [101/196], Train Loss: [0.974]
Epoch: [  2/  5], Steps: [196/196], Train Loss: [0.832]
--------------------------------------------------
Epoch: [  2/  5], Average Train Loss: [1.019], Accuracy: [0.685]
--------------------------------------------------
Epoch: [  3/  5], Steps: [  1/196], Train Loss: [0.917]
Epoch: [  3/  5], Steps: [101/196], Train Loss: [0.879]
Epoch: [  3/  5], Steps: [196/196], Train Loss: [0.743]
--------------------------------------------------
Epoch: [  3/  5], Average Train Loss: [0.852], Accuracy: [0.721]
--------------------------------------------------
Epoch: [  4/  5], Steps: [  1/196], Train Loss: [0.911]
Epoch: [  4/  5], Steps: [101/196], Train Loss: [0.703]
Epoch: [  4/  5], Steps: [196/196], Train Loss: [0.768]
--------------------------------------------------
Epoch: [  4/  5], Average Train Loss: [0.777], Accuracy: [0.737]
--------------------------------------------------
Epoch: [  5/  5], Steps: [  1/196], Train Loss: [0.793]
Epoch: [  5/  5], Steps: [101/196], Train Loss: [0.809]
Epoch: [  5/  5], Steps: [196/196], Train Loss: [0.734]
--------------------------------------------------
Epoch: [  5/  5], Average Train Loss: [0.745], Accuracy: [0.742]
--------------------------------------------------
================================================================================
End of validation the best Accuracy is:  0.742, save the best ckpt file in ./BestCheckpoint/resnet50-best.ckpt

在这里插入图片描述

可视化模型预测

定义visualize_model函数,使用上述验证精度最高的模型对CIFAR-10测试数据集进行预测,并将预测结果可视化。若预测字体颜色为蓝色表示为预测正确,预测字体颜色为红色则表示预测错误。

由上面的结果可知,5个epochs下模型在验证数据集的预测准确率在70%左右,即一般情况下,6张图片中会有2张预测失败。如果想要达到理想的训练效果,建议训练80个epochs。

import matplotlib.pyplot as plt


def visualize_model(best_ckpt_path, dataset_val):
    num_class = 10  # 对狼和狗图像进行二分类
    net = resnet50(num_class)
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    # 加载验证集的数据进行验证
    data = next(dataset_val.create_dict_iterator())
    images = data["image"]
    labels = data["label"]
    # 预测图像类别
    output = net(data['image'])
    pred = np.argmax(output.asnumpy(), axis=1)

    # 图像分类
    classes = []

    with open(data_dir + "/batches.meta.txt", "r") as f:
        for line in f:
            line = line.rstrip()
            if line:
                classes.append(line)

    # 显示图像及图像的预测值
    plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'
        plt.title('predict:{}'.format(classes[pred[i]]), color=color)
        picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))
        mean = np.array([0.4914, 0.4822, 0.4465])
        std = np.array([0.2023, 0.1994, 0.2010])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()


# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)
import matplotlib.pyplot as plt
​
​
def visualize_model(best_ckpt_path, dataset_val):
    num_class = 10  # 对狼和狗图像进行二分类
    net = resnet50(num_class)
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    # 加载验证集的数据进行验证
    data = next(dataset_val.create_dict_iterator())
    images = data["image"]
    labels = data["label"]
    # 预测图像类别
    output = net(data['image'])
    pred = np.argmax(output.asnumpy(), axis=1)
​
    # 图像分类
    classes = []
​
    with open(data_dir + "/batches.meta.txt", "r") as f:
        for line in f:
            line = line.rstrip()
            if line:
                classes.append(line)
​
    # 显示图像及图像的预测值
    plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'
        plt.title('predict:{}'.format(classes[pred[i]]), color=color)
        picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))
        mean = np.array([0.4914, 0.4822, 0.4465])
        std = np.array([0.2023, 0.1994, 0.2010])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')
​
    plt.show()
​
​
# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780714.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

P1392 取数

传送门&#xff1a;取数 如若你看完题解后&#xff0c;仍有问题&#xff0c;欢迎评论 首先说一下 我首先想到的思路 &#xff08; 20%通过率 &#xff09;&#xff1a;通过dfs , 将所有的情况放入priority_queue中&#xff08;greater<int>&#xff09;&#xff0c;维持…

计算两种人像之间的相似度

通过调研&#xff0c;目前存在几种能够计算两个人脸相似度的方法&#xff1a; 1.使用结构相似性计算人脸之间的相似度 结构准确性&#xff1a;生成的图片是否保留了原图足够多细节。 &#xff08;1&#xff09;结构准确性衡量指标&#xff1a;SSIM/MMSSIM SSIM&#xff08;结构…

纯前端低代码开发脚手架 - daelui/molecule

daelui/molecule低代码开发脚手架&#xff1a;分子组件开发、预览、打包 页面代码示例、大屏代码示例预览 可开发页面组件 可开发大屏组件 项目git地址&#xff1a;https://gitee.com/daelui/molecule 在线预览&#xff1a;http://www.daelui.com/daelui/molecule/app/index.…

STM32第十六课:WiFi模块的配置及应用

文章目录 需求一、WiFi模块概要二、配置流程1.配置通信串口&#xff0c;引脚和中断2.AT指令3.发送逻辑编写 三、需求实现代码总结 需求 完成WiFi模块的配置,使其最终能和服务器相互发送消息。 一、WiFi模块概要 本次使用的WiFi模块为ESP-12F模块&#xff08;安信可&#xf…

聚类分析方法(一)

目录 一、聚类分析原理&#xff08;一&#xff09;聚类分析概述&#xff08;二&#xff09;聚类的数学定义&#xff08;三&#xff09;簇的常见类型&#xff08;四&#xff09;聚类框架及性能要求&#xff08;五&#xff09;簇的距离 二、划分聚类算法&#xff08;一&#xff0…

车载测试之-CANoe创建仿真工程

在现代汽车工业中&#xff0c;车载测试是确保车辆电子系统可靠性和功能性的关键环节。而使用CANoe创建仿真工程&#xff0c;不仅能够模拟真实的车辆环境&#xff0c;还能大大提升测试效率和准确性。那么&#xff0c;CANoe是如何实现这些的呢&#xff1f; 车载测试中&#xff0…

PXIe-7976【K410T】

起售价 RMB 152,880.00 块RAM(BRAM): 28620 kbit 动态RAM(DRAM): 2 GB FPGA: Kintex-7 410T PXI背板链路: PCI-Express Gen2 x 8 FPGA片: 63550 DSP片: 1540

敏感词匹配DFA算法

算法简介与场景介绍 DFA算法&#xff0c;中文全称为确定性有穷自动机。它的基本思想是构建一个有穷自动机&#xff0c;当用户输入文本时&#xff0c;通过自动机的状态转换来快速匹配敏感词。具体特征是&#xff0c;有一个有效状态的集合和一些从一个状态通向另一个状态的边&am…

并发处理 优先图和多重图

优先图(Precedence Graph)视图可串性多重图(Polygraph) 优先图(Precedence Graph) 优先图用于冲突可串性的判断。 优先图结构&#xff1a; 结点 (Node)&#xff1a;事务&#xff1b;有向边 (Arc): Ti → Tj &#xff0c;满足 Ti <s Tj&#xff1b; 存在Ti中的操作A1和Tj…

利用redis Zset实现 排行榜功能 配合xxl-job持久化每一个赛季的排行榜

zset 可以排序 使用xxl-job实现定时任务 对历史排行榜持久化到数据库 排行榜有当前赛季排行版和历史排行榜 当前赛季排行榜利用redis 中的SortSet 数据结构 获取 每个月的 月初 利用xxl-job的定时任务持久化化上一个月的排行榜信息 并删除redis中的数据 当排行榜数据量巨大时…

【5G VoNR】VoNR流程简述

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G技术研究。 博客内容主要围绕…

移动校园(5):课程表数据获取及展示

首先写下静态页面&#xff0c;起初打算做成一周的课表&#xff0c;由于是以小程序的形式展现&#xff0c;所以显示一周的话会很拥挤&#xff0c;所以放弃下面的方案&#xff0c;改作一次显示一天 改后结果如下&#xff0c;后期还会进行外观优化 真正困难的部分是数据获取 大家大…

拆分Transformer注意力,韩国团队让大模型解码提速20倍|大模型AI应用开始小规模稳步爆发|周伯文:大模型也有幻觉,全球AI创新指数公布

拆分Transformer注意力&#xff0c;韩国团队让大模型解码提速20倍AI正在颠覆AI上市不到两年&#xff0c;蜗牛游戏可能要退市了&#xff1f;世界人工智能大会结束了&#xff0c;百花齐放&#xff0c;但也群魔乱舞“串联OLED”被苹果带火了&#xff0c;比OLED强在哪里&#xff1f…

文化财经macd顶底背离幅图指标公式源码

DIFF:EMA(CLOSE,12) - EMA(CLOSE,26); DEA:EMA(DIFF,9); MACD:2*(DIFF-DEA),COLORSTICK; JC:CROSS(DIFF,DEA); SC:CROSSDOWN(DIFF,DEA); N1:BARSLAST(JC)1; N2:BARSLAST(SC)1; HH:VALUEWHEN(CROSSDOWN(DIFF,DEA),HHV(H,N1));//上次MACD红柱期间合约最大值 HH2:VALUEWHE…

MySQL:视图、用户管理、C/C++/图形化界面链接访问数据库、网页逻辑

文章目录 1.视图1.1 视图的基本使用1.2 视图的基本规则 2.用户管理2.1 创建、删除、修改用户2.2 数据库权限 3.C/C/图形化界面链接访问数据库3.1 准备工作及常用接口介绍3.2 图形化界面访问MySQL 4.用户逻辑(注册&&登录) 1.视图 视图是一个虚拟表&#xff0c;其内容由…

springboot苏桦旅游管理系统-计算机毕业设计源码02123

摘要 旅游业在全球范围内不断发展&#xff0c;为了提供高效的旅游管理和服务&#xff0c;开发一个旅游管理系统具有重要意义。本文旨在设计和实现该旅游管理系统&#xff0c;以满足用户和管理员的需求。该系统采用Spring Boot作为后端框架&#xff0c;利用其简化的开发流程和强…

ComfyUI如何高效率使用多Lora

Efficient 工作流 {"last_node_id": 29,"last_link_id": 56,"nodes": [{"id": 26,"type": "LoRA Stacker","pos": [540,270],"size": {"0": 320,"1": 322},"flag…

如何让代码兼容 Python 2 和 Python 3?Future 库助你一臂之力

目录 01Future 是什么? 为什么选择 Future? 安装与配置 02Future 的基本用法 1、兼容 print 函数 2、兼容整数除法 3、兼容 Unicode 字符串 03Future 的高级功能 1. 处理字符串与字节 2. 统一异常处理…

STM32-TIM定时器

本内容基于江协科技STM32视频内容&#xff0c;整理而得。 文章目录 1. TIM1.1 TIM定时器1.2 定时器类型1.3 基本定时器1.4 通用定时器1.4 高级定时器1.5 定时中断基本结构1.6 预分频器时序1.7 计数器时序1.8 计数器无预装时序1.9 计数器有预装时序1.10 RCC时钟树 2. TIM库函数…

路径跟踪算法之PID、PP、Stanley详细理解

一、前言 今天又来补作业了&#xff01; 在跟踪控制领域&#xff0c;PID&#xff08;Proportional-Integral-Derivative, 分别为比例、积分、微分&#xff09;、PP&#xff08; Pure-Puresuit, 纯跟踪&#xff09;、Stanley&#xff08;前轮反馈控制&#xff09;是三种最为常见…