昇思11天

基于 MindSpore 实现 BERT 对话情绪识别

BERT模型概述

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用,例如问答、命名实体识别、自然语言推理和文本分类。BERT基于Transformer中的Encoder,并采用了双向的结构,因此掌握Transformer的Encoder结构是理解BERT的基础。

BERT模型的主要创新点

BERT模型的主要创新点在于其预训练方法,即使用了**Masked Language Model(MLM)Next Sentence Prediction(NSP)**两种方法来分别捕捉词语和句子级别的表征(representation)。

Masked Language Model(MLM)

在MLM训练中,随机将语料库中15%的单词进行Mask操作。具体操作如下:

  • 80%的单词直接用[Mask]替换。
  • 10%的单词替换成其他随机的单词。
  • 10%的单词保持不变。

通过这种方式,模型需要预测被Mask的词,从而捕捉到单词级别的语义信息。

Next Sentence Prediction(NSP)

NSP的目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句。通过预测B是否为A的下一句,模型能够学习到句子级别的语义关系。

BERT的预训练和Fine-tuning

BERT预训练之后,会保存其Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。预训练好的BERT模型可以用于下游任务的Fine-tuning,如文本分类、相似度判断和阅读理解等。

对话情绪识别(EmoTect)

对话情绪识别(Emotion Detection,简称EmoTect),旨在识别智能对话场景中的用户情绪。针对用户文本,自动判断其情绪类别并给出相应的置信度。情绪类型一般分为积极、消极和中性。对话情绪识别适用于聊天、客服等多个场景,帮助企业更好地把握对话质量、改善用户交互体验,分析客服服务质量并降低人工质检成本。
步骤:通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
有构建好的,直接调用:
from mindnlp.transformers import BertForSequenceClassification, BertModel

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780164.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Angular基础保姆级教程 - 1

Angular 基础总结(完结版) 1. 概述 Angular 是一个使用 HTML、CSS、TypeScript 构建客户端应用的框架,用来构建单页应用程序。 Angular 是一个重量级的框架,内部集成了大量开箱即用的功能模块。 Angular 为大型应用开发而设计…

Hadoop3:NameNode和DataNode多目录配置(扩充磁盘的技术支持)

一、NameNode多目录 1、说明 NameNode多目录,需要在刚搭建Hadoop集群的时候,就配置好 因为,配置这个,需要格式化NameNode 所以,如果一开始没配置NameNode多目录,后面,就不要配置了。 2、配置…

移动校园(3):处理全校课程数据excel文档,实现空闲教室查询与课程表查询

首先打开教学平台 然后导出为excel文档 import mathimport pandas as pd import pymssql serverName 127.0.0.1 userName sa passWord 123456 databaseuniSchool conn pymssql.connect(serverserverName,useruserName,passwordpassWord,databasedatabase) cursor conn.cur…

阶段三:项目开发---大数据开发运行环境搭建:任务6:安装配置HBase

任务描述 知识点:安装配置HBase 重 点: 安装配置HBase 难 点:无 内 容: 本阶段任务是安装配置HBase,实时飞行数据是保存在HBase中的,因为HBase具有高效的读写能力,在当前项目中我们是…

hive表小练习

-- 将对应的命令写在每个步骤中 -- 1.在hive中创建数据库school create database if not exists school; -- 2.在数据库school中创建如下的表 每张表的列分隔符都是, 存储格式是textfile 创建表名为student_info, 字段为stu_id 类型为string,注释为学生id 字段为stu_name 类…

Python酷库之旅-第三方库Pandas(008)

目录 一、用法精讲 16、pandas.DataFrame.to_json函数 16-1、语法 16-2、参数 16-3、功能 16-4、返回值 16-5、说明 16-6、用法 16-6-1、数据准备 16-6-2、代码示例 16-6-3、结果输出 17、pandas.read_html函数 17-1、语法 17-2、参数 17-3、功能 17-4、返回值…

element-ui输入框如何实现回显的多选样式?

废话不多说直接上效果&#x1f9d0; 效果图 <template><div><el-form:model"params"ref"queryForm"size"small":inline"true"label-width"68px"><el-form-item label"标签" prop"tag&q…

SSM高校教师教学质量评估系统-计算机毕业设计源码03344

摘要 在高等教育中&#xff0c;教学质量是培养优秀人才的关键。为了提高教学质量&#xff0c;高校需要建立一套科学、有效的教师教学质量评估系统。本研究采用 SSM技术框架&#xff0c;旨在开发一款高校教师教学质量评估系统。 SSM框架作为一种成熟的Java开发框架&#xff0c;具…

软件测试《用例篇》

测试用例 测试用例的概念 测试用例是被测试人员向被测试系统发起的一组集合&#xff0c;包括测试环境&#xff0c;操作步骤&#xff0c;预期结果&#xff0c;测试数据等 使用测试用例的好处 使用测试用例进行测试的好处主要有&#xff1a;提高测试效率&#xff0c;降低测试的重…

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题 闪烁现状解决方案 闪烁现状 我们写一个非常简单的页面&#xff1a; import { Button } from antdexport default async function Page() {return <><Button typeprimary>AAA</Button></> }NextJs…

[答疑]EA中SysML块定义图的引用关联怎样在references分栏中出现

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 例如&#xff0c;用EA在BDD&#xff08;块定义图&#xff09;上画了一个关联&#xff1a; 此时&#xff0c;“手机”和“SIM卡”中都没有出现references栏。 右击“手机”&#xff0c…

Pytorch 实践手写数字识别深度学习网络 LeNet-5

Pytorch 实践手写数字识别深度学习网络 LeNet-5 文章目录 Pytorch 实践手写数字识别深度学习网络 LeNet-5认识 LeNet-5认识数据集处理数据集下载数据集读取数据定义Dataset的继承类把数据进行载入载入dataloader 编写网络编写训练与测试代码实践结果展示完整代码 训练手写体识别…

#数据结构 笔记一

数据结构是计算机存储、组织数据的方式。 数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。数据结构是带有结构特性的数据元素的集合&#xff0c;它研究的是数据的逻辑结构和物理结构以及它们之间的相互关系&#xff0c;并对这种结构定义相适应的运算&#xff0…

微软正在放弃React

最近&#xff0c;微软Edge团队撰写了一篇文章&#xff0c;介绍了微软团队如何努力提升Edge浏览器的性能。但在文中&#xff0c;微软对React提出了批评&#xff0c;并宣布他们将不再在Edge浏览器的开发中使用React。 我将详细解析他们的整篇文章内容&#xff0c;探讨这一决定对…

Java对象通用比对工具

目录 背景 思路 实现 背景 前段时间的任务中&#xff0c;遇到了需要识别两个对象不同属性的场景&#xff0c;如果使用传统的一个个属性比对equals方法&#xff0c;会存在大量的重复工作&#xff0c;而且为对象新增了属性后&#xff0c;比对方法也需要同步修改&#xff0c;不方…

微软拼音输入法不显示选字框问题

问题展示&#xff1a;不显示选字框 解决方式 打开兼容性即可&#xff08;估计是升级带来的bug&#xff09;

STM32 - 内存分区与OTA

最近搞MCU&#xff0c;发现它与SOC之间存在诸多差异&#xff0c;不能沿用SOC上一些技术理论。本文以STM L4为例&#xff0c;总结了一些STM32 小白入门指南。 标题MCU没有DDR&#xff1f; 是的。MCU并没有DDR&#xff0c;而是让代码存储在nor flash上&#xff0c;临时变量和栈…

LeetCode题练习与总结:直线上最多的点数--149

一、题目描述 给你一个数组 points &#xff0c;其中 points[i] [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。 示例 1&#xff1a; 输入&#xff1a;points [[1,1],[2,2],[3,3]] 输出&#xff1a;3示例 2&#xff1a; 输入&#xff1a;points [[1,…

水箱高低水位浮球液位开关

水箱高低水位浮球液位开关概述 水箱高低水位浮球液位开关是一种用于监测和控制水箱中液位的自动化设备&#xff0c;它能够在水箱液位达到预设的高低限制时&#xff0c;输出开关信号&#xff0c;以控制水泵或电磁阀的开闭&#xff0c;从而维持水箱液位在一个安全的范围内。这类设…

STM32快速复习(八)SPI通信

文章目录 前言一、SPI是什么&#xff1f;SPI的硬件电路&#xff1f;SPI发送的时序&#xff1f;二、库函数二、库函数示例代码总结 前言 SPI和IIC通信算是我在大学和面试中用的最多&#xff0c;问的最多的通信协议 IIC问到了&#xff0c;一般SPI也一定会问到。 SPI相对于IIC多了…