昇思MindSpore学习总结十——ResNet50迁移学习

1、迁移学习

(抄自CS231n Convolutional Neural Networks for Visual Recognition)

        在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对罕见。相反,通常会在非常大的数据集上预训练 ConvNet(例如 ImageNet,其中包含 120 万张图像和 1000 个类别),然后将 ConvNet 用作初始化或固定特征提取器来执行感兴趣的任务。三个主要的迁移学习方案如下所示:

  • ConvNet 作为固定特征提取器。在 ImageNet 上预训练 ConvNet,删除最后一个全连接层(该层的输出是 ImageNet 等不同任务的 1000 个类分数),然后将 ConvNet 的其余部分视为新数据集的固定特征提取器。在 AlexNet 中,这将为每个图像计算一个 4096-D 向量,该图像包含紧接在分类器之前的隐藏层的激活。我们将这些特征称为 CNN 代码。对于性能来说,如果这些代码在 ImageNet 上训练 ConvNet 期间也被阈值化(通常情况如此),那么这些代码是 ReLUd(即阈值为零)是很重要的。提取所有图像的 4096-D 代码后,为新数据集训练线性分类器(例如线性 SVM 或 Softmax 分类器)。
  • 微调 ConvNet。第二种策略是,不仅要在新数据集上替换和重新训练ConvNet上的分类器,还要通过继续反向传播来微调预训练网络的权重。可以对 ConvNet 的所有层进行微调,也可以将一些早期的层固定(由于过度拟合问题)并仅微调网络的某些更高级别的部分。这是由于观察到 ConvNet 的早期特征包含更通用的特征(例如边缘检测器或颜色斑点检测器),这些特征应该对许多任务有用,但 ConvNet 的后续层逐渐变得更加特定于原始数据集中包含的类的详细信息。例如,对于包含许多犬种的 ImageNet,ConvNet 的很大一部分表示能力可能专门用于区分犬种的功能。
  • 预训练模型。由于现代 ConvNet 需要 2-3 周的时间才能在 ImageNet 上的多个 GPU 上进行训练,因此通常会看到人们发布最终的 ConvNet 检查点,以造福其他可以使用网络进行微调的人。例如,Caffe 库有一个模型动物园,人们可以在其中共享他们的网络权重。

 2、数据准备

        下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。

from download import download

dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"

download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

3、加载数据集

         狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作。

#定义输入
batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"

# 创建训练数据集

def create_dataset_canidae(dataset_path, usage):
    """数据加载"""
    data_set = ds.ImageFolderDataset(dataset_path,
                                     num_parallel_workers=workers,
                                     shuffle=True,)

    # 数据增强操作
    mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
    std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
    scale = 32

    if usage == "train":
        # Define map operations for training dataset
        trans = [
            vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
            vision.RandomHorizontalFlip(prob=0.5),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]
    else:
        # Define map operations for inference dataset
        trans = [
            vision.Decode(),
            vision.Resize(image_size + scale),
            vision.CenterCrop(image_size),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]


    # 数据映射操作
    data_set = data_set.map(
        operations=trans,
        input_columns='image',
        num_parallel_workers=workers)


    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

4、数据集可视化

        从mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]

print("Tensor of image", images.shape)
print("Labels:", labels)

4.1 图像标签可视化 

 对获取到的图像及标签数据进行可视化,标题为图像对应的label名称。

import matplotlib.pyplot as plt
import numpy as np

# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}

plt.figure(figsize=(5, 5))
for i in range(4):
    # 获取图像及其对应的label
    data_image = images[i].asnumpy()
    data_label = labels[i]
    # 处理图像供展示使用
    data_image = np.transpose(data_image, (1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    data_image = std * data_image + mean
    data_image = np.clip(data_image, 0, 1)
    # 显示图像
    plt.subplot(2, 2, i+1)
    plt.imshow(data_image)
    plt.title(class_name[int(labels[i].asnumpy())])
    plt.axis("off")

plt.show()

 5、训练模型

        使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。

5.1 构建网络

from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normal


weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

 

class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支

        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out
class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):

        identity = x  # shortscuts分支

        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)

        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out

 

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支


    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)
from mindspore import load_checkpoint, load_param_into_net


class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()

        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义,
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)

    def construct(self, x):

        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)

        return x


def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)

    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrianed_ckpt, replace=True)
        param_dict = load_checkpoint(pretrianed_ckpt)
        load_param_into_net(model, param_dict)

    return model


def resnet50(num_classes: int = 1000, pretrained: bool = False):
    "ResNet50模型"
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

 5.2 固定特征进行训练

         使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False 冻结参数,以便不在反向传播中计算梯度。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time

net_work = resnet50(pretrained=True)

# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head

# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool

# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():
    if param.name not in ["fc.weight", "fc.bias"]:
        param.requires_grad = False

# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


def forward_fn(inputs, targets):
    logits = net_work(inputs)
    loss = loss_fn(logits, targets)

    return loss

grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)

def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss

# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

5.3 训练和评估

         开始训练模型,与没有预训练模型相比,将节约一大半时间,因为此时可以不用计算部分梯度。保存评估精度最高的ckpt文件于当前路径的./BestCheckpoint/resnet50-best-freezing-param.ckpt。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

num_epochs = 5

# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"
import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
# 开始循环训练
print("Start Training Loop ...")

best_acc = 0

for epoch in range(num_epochs):
    losses = []
    net_work.set_train()

    epoch_start = time.time()

    # 为每轮训练读入数据
    for i, (images, labels) in enumerate(data_loader_train):
        labels = labels.astype(ms.int32)
        loss = train_step(images, labels)
        losses.append(loss)

    # 每个epoch结束后,验证准确率

    acc = model1.eval(dataset_val)['Accuracy']

    epoch_end = time.time()
    epoch_seconds = (epoch_end - epoch_start) * 1000
    step_seconds = epoch_seconds/step_size_train

    print("-" * 20)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, sum(losses)/len(losses), acc
    ))
    print("epoch time: %5.3f ms, per step time: %5.3f ms" % (
        epoch_seconds, step_seconds
    ))

    if acc > best_acc:
        best_acc = acc
        if not os.path.exists(best_ckpt_dir):
            os.mkdir(best_ckpt_dir)
        ms.save_checkpoint(net_work, best_ckpt_path)

print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

 5.4 可视化模型预测

        使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。

import matplotlib.pyplot as plt
import mindspore as ms

def visualize_model(best_ckpt_path, val_ds):
    net = resnet50()
    # 全连接层输入层的大小
    in_channels = net.fc.in_channels
    # 输出通道数大小为狼狗分类数2
    head = nn.Dense(in_channels, 2)
    # 重置全连接层
    net.fc = head
    # 平均池化层kernel size为7
    avg_pool = nn.AvgPool2d(kernel_size=7)
    # 重置平均池化层
    net.avg_pool = avg_pool
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    model = train.Model(net)
    # 加载验证集的数据进行验证
    data = next(val_ds.create_dict_iterator())
    images = data["image"].asnumpy()
    labels = data["label"].asnumpy()
    class_name = {0: "dogs", 1: "wolves"}
    # 预测图像类别
    output = model.predict(ms.Tensor(data['image']))
    pred = np.argmax(output.asnumpy(), axis=1)

    # 显示图像及图像的预测值
    plt.figure(figsize=(5, 5))
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels[i] else 'red'
        plt.title('predict:{}'.format(class_name[pred[i]]), color=color)
        picture_show = np.transpose(images[i], (1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()
visualize_model(best_ckpt_path, dataset_val)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/779680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flask之电子邮件

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、使用Flask-Mail发送电子邮件 1.1、配置Flask-Mail 1.2、构建邮件数据 1.3、发送邮件 二、使用事务邮件服务SendGrid 2.1、注册SendGr…

昇思25天学习打卡营第11天|MindSpore 助力下的 GPT2:数据集加载处理及模型全攻略

目录 环境配置 数据集下载和获取 数据集拆分 处理数据集 模型构建 ​​​​​​​模型训练 ​​​​​​​模型推理 环境配置 “%%capture captured_output”这一行指令通常旨在捕获后续整个代码块所产生的输出结果。首先,将已预装的 mindspore 库予以卸载。随后&a…

68.WEB渗透测试-信息收集- WAF、框架组件识别(8)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:67.WEB渗透测试-信息收集- WAF、框架组件识别(7) 右边这些是waf的…

【Java学习笔记】方法的使用

【Java学习笔记】方法的使用 一、一个例子二、方法的概念及使用(一)什么是方法(二)方法的定义(三)方法调用的执行过程(四)实参和形参的关系(重要)&#xff08…

第1节、基于太阳能的环境监测系统——MPPT充电板

一、更新时间: 本篇文章更新于:2024年7月6日23:33:30 二、内容简介: 整体系统使用太阳能板为锂电池充电和系统供电,天黑后锂电池为系统供电,本节主要介绍基于CN3722的MPPT太阳能充电模块,这块主要是硬件…

如何从相机的存储卡中恢复原始照片

“不好了。” 当您意识到自己不小心从存储卡中删除了照片,或者错误地格式化了相机的记忆棒时,您首先会喊出这两个词。这是一种常见的情况,每个人一生中都会遇到这种情况。幸运的是,有办法从相机的 RAW 记忆棒中恢复已删除的照片。…

关于小爱同学自定义指令执行

1.前言 之前买了小爱同学音响,一直想让其让我的生活变得更智能,编写一些程序来完成一些自动化任务,但是经过搜索发现,官方开发者平台不能用了,寻找api阶段浪费了我很长时间。最后在github 开源项目发现了俩个比较关键…

gcc的编译C语言的过程

gcc的简介 GCC(GNU Compiler Collection)是由GNU项目开发和维护的一套开源编程语言编译器集合。它支持多种编程语言,包括但不限于C、C、Objective-C、Fortran、Ada等。GCC被广泛应用于编译和优化各种程序,是许多开发者和组织的首选…

防火墙基础及登录(华为)

目录 防火墙概述防火墙发展进程包过滤防火墙代理防火墙状态检测防火墙UTM下一代防火墙(NGFW) 防火墙分类按物理特性划分软件防火墙硬件防火墙 按性能划分百兆级别和千兆级别 按防火墙结构划分单一主机防火墙路由集成式防火墙分布式防火墙 华为防火墙利用…

ubuntu22.04+pytorch2.3安装PyG图神经网络库

ubuntu下安装torch-geometric库,图神经网络 开发环境 ubuntu22.04 conda 24.5.0 python 3.9 pytorch 2.0.1 cuda 11.8 pyg的安装网上教程流传着许多安装方式,这些安装方式主要是:预先安装好pyg的依赖库,这些依赖库需要对应上pyth…

C++11|包装器

目录 引入 一、function包装器 1.1包装器使用 1.2包装器解决类型复杂 二、bind包装器 引入 在我们学过的回调中,函数指针,仿函数,lambda都可以完成,但他们都有一个缺点,就是类型的推导复杂性,从而会…

详解Amivest 流动性比率

详解Amivest 流动性比率 Claude-3.5-Sonnet Poe Amivest流动性比率是一个衡量证券市场流动性的重要指标。这个比率主要用于评估在不对价格造成重大影响的情况下,市场能够吸收多少交易量。以下是对Amivest流动性比率的详细解释: 定义: Amivest流动性比率是交易额与绝对收益率的…

一.2.(1)双极型晶体三极管的结构、工作原理、特性曲线及主要参数

1.双极型晶体三极管的结构 学会区分P管和N管,会绘制符号 2.工作原理 无论是PNP 还是NPN,本质上放大时,都是发射结正偏,集电极反偏。(可以简单理解为pn为二极管,每个三极管都有两个二极管) 其中电…

行内元素、块级元素居中

行内元素居中 水平居中 {text-align&#xff1a;center;}垂直居中 单行——行高等于盒子高度 <head><style>.father {width: 400px;height: 200px;/* 行高等于盒子高度&#xff1a;line-height: 200px; */line-height: 200px;background-color: pink;}.son {}&…

深入刨析Redis存储技术设计艺术(二)

三、Redis主存储 3.1、存储相关结构体 redisServer:服务器 server.h struct redisServer { /* General */ pid_t pid; /* Main process pid. */ pthread_t main_thread_id; /* Main thread id */ char *configfile; /* Absolut…

js获取当前浏览器地址,ip,端口号等等

前言&#xff1a; js获取当前浏览器地址&#xff0c;ip&#xff0c;端口号等等 window.location属性查询 具体属性&#xff1a; 1、获取他的ip地址 window.location.hostname 2、获取他的端口号 window.location.port 3、获取他的全路径 window.location.origin 4、获取…

EtherCAT转Profinet网关配置说明第一讲:配置软件安装及介绍

网关XD-ECPNS20为EtherCAT转Profinet协议网关&#xff0c;使EtherCAT协议和Profinet协议两种工业实时以太网网络之间双向传输 IO 数据。适用于具有EtherCAT协议网络与Profinet协议网络跨越网络界限进行数据交换的解决方案。 本网关通过上位机来进行配置。 首先安装上位机软件 一…

【日志信息管理】管理日志信息的类

日志用于记录程序的执行记录包括程序的出错记录&#xff0c;程序致命退出原因&#xff0c;程序的正常执行记录。这样我们就可以很快的察觉程序的错误原因、执行状况等等&#xff0c;因此管理日志信息是非常重要的。 日志一般由以下部分组合&#xff1a; 日志时间、日志等级、…

数据库可视化管理工具dbeaver试用及问题处理。

本文记录了在内网离线安装数据库可视化管理工具dbeaver的过程和相关问题处理方法。 一、下载dbeaver https://dbeaver.io/download/ 笔者测试时Windows平台最新版本为&#xff1a;dbeaver-ce-24.1.1-x86_64-setup.exe 二、安装方法 一路“下一步”即可 三、问题处理 1、问…

06浅谈大语言模型可调节参数TopP和TopK

浅谈大模型参数TopP和TopK 大语言模型中的temperature、top_p和top_k参数是用来控制模型生成文本时的随机性和创造性的。下面分享一下topP和topK两个参数的意义及逻辑&#xff1b; top K&#xff08;Top-K Sampling&#xff09; 作用&#xff1a;只从模型认为最可能的k个词中选…