昇思25天学习打卡营第2天|MindSpore快速入门

打卡

目录

打卡

快速入门案例:minist图像数据识别任务

案例任务说明

流程

1 加载并处理数据集

2 模型网络构建与定义

3 模型约束定义

4 模型训练

5 模型保存

6 模型推理

相关参考文档入门理解

MindSpore数据处理引擎

模型网络参数初始化

模型优化器

损失函数

代码

安装

从模型训练到预测推理

self_main_train_and_save.py

self_dataprocess.py

self_network.py

self_modeltrain.py

self_modeltest.py

self_predict.py


快速入门案例:minist图像数据识别任务

案例任务说明

MINIST数据集是有标签的图像数据,图像数据是0-9的手写阿拉伯数字。其中,训练集有6W个,测试集1W个。

目的是训练一个可以高效识别手写阿拉伯数字的模型。

流程

1 加载并处理数据集

涉及到的mindspore接口 mindspore.dataset。例如对数据集的map、batch、shuffle等操作,数据列名获取,对数据集进行迭代访问、查看数据和标签的shape和datatype等。

2 模型网络构建与定义

涉及到 mindspore.nn 类。例如用户可继承nn.Cell类来自定义网络结构,其中的construct类函数包含数据(Tensor)的变换过程。。

3 模型约束定义

包括损失函数、优化器等。如 nn.CrossEntropyLoss() 、nn.SGD(model.trainable_params(), 1e-2)

4 模型训练

- 定义训练函数,用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

- 定义测试函数,用来评估模型的性能。

5 模型保存

- 两种保存方式:

1)模型参数保存:mindspore.save_checkpoint(model, "model.ckpt")

2)统一的中间表示(Intermediate Representation,IR)的保存,MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。mindspore.export(model, inputs, file_name="model", file_format="MINDIR")

6 模型推理

- 两种加载方式:

1)模型参数加载: 

> model = network()

> param_dict = mindspore.load_checkpoint("model.ckpt");  

param_not_load, _ = mindspore.load_param_into_net(model, param_dict)

2)统一的中间表示(Intermediate Representation,IR)的加载:

> mindspore.set_context(mode=mindspore.GRAPH_MODE)
> graph = mindspore.load("model.mindir")
> model = nn.GraphCell(graph)  ## nn.GraphCell 仅支持图模式。
> outputs = model(inputs)

保存与加载 — MindSpore master 文档

相关参考文档入门理解

MindSpore数据处理引擎

MindSpore 通过对外暴露API层来构建数据图;内部的Data Processing Pipeline 层用来进行数据加载和预处理多步并行流水线。
高性能数据处理引擎 — MindSpore master 文档

MindSpore 通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。

数据集 Dataset — MindSpore master 文档

数据变换 Transforms — MindSpore master 文档

模型网络参数初始化

Initializer是MindSpore内置的参数初始化基类,所有内置参数初始化方法均继承该类。mindspore.nn中提供的神经网络层封装均提供weight_initbias_init等入参,可以直接使用实例化的Initializer进行参数初始化。

参数初始化 — MindSpore master 文档

模型优化器

优化器 — MindSpore master 文档

损失函数

损失函数 — MindSpore master 文档

代码

安装

pip/conda均可:

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1

从模型训练到预测推理

训练:

python self_main_train_and_save.py

推理:

python self_predict.py

self_main_train_and_save.py

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# 用download库从公开华为云obs桶下载 MINIST 数据集并解压。因为mindspore.dataset 提供的接口仅支持解压后的数据文件 
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)    
 
## 1 加载数据集
train_dataset = MnistDataset('MNIST_Data/train', shuffle=False)
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names())   # 打印数据集中包含的数据列名,用于dataset的预处理。输出['image', 'label']


## 2 MindSpore的dataset使用数据处理流水线,这里将处理好的数据集打包为大小为64的batch。
from self_dataprocess import datapipe
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)  
test_dataset = datapipe(test_dataset, 64)  

## 3 数据集加载后,一般以迭代方式获取数据,然后送入神经网络中进行训练。可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
    “”“
    Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
    Shape of label: (64,) Int32
    ”“”
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break


## 4 模型训练
from self_network import Network
from self_modeltrain import train, loss_fn 
from self_modelteset import test
model = Network()
epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")


## 5 保存模型
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

self_dataprocess.py

from mindspore.dataset import vision, transforms
def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)
    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

self_network.py

# Define model
from mindspore import nn

class Network(nn.Cell): 
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits


def check_network():
    model = Network()
    print(model)

self_modeltrain.py

# Instantiate loss function and optimizer
from mindspore import nn

loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss


def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()     ## 设置当前Cell和所有子Cell的训练模式。对于训练和预测具有不同结构的网络层(如 BatchNorm),将通过这个属性区分分支。如果设置为True,则执行训练分支,否则执行另一个分支。默认True
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)
        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

self_modeltest.py

from mindspore import nn 

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

self_predict.py

## 加载模型
from self_network import Network

# Instantiate a random initialized model
model = Network()

# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)  
print(param_not_load)   ## param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

## 加载后的模型可以直接用于预测推理。
model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/778922.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(一)项目实践-利用Appdesigner制作目标跟踪仿真软件

目录 前言 一、软件页面设计 二、仿真部分 (一)参数输入 (二)绘图部分 (三)目标追踪程序 总结 前言 本博客有一个专栏用来介绍有关MATLAB中的Appdesigner的操作以及使用,本文是为了深化读者对于…

昇思25天学习打卡营第11天|ResNet50图像分类

文章目录 昇思MindSpore应用实践基于MindSpore的ResNet50图像分类1、ResNet50 简介2、数据集预处理及可视化3、构建网络构建 Building Block构建 Bottleneck Block构建 ResNet50 网络 4、模型训练5、图像分类模型推理 Reference 昇思MindSpore应用实践 本系列文章主要用于记录…

Java | Leetcode Java题解之第217题存在重复元素

题目&#xff1a; 题解&#xff1a; class Solution {public boolean containsDuplicate(int[] nums) {Set<Integer> set new HashSet<Integer>();for (int x : nums) {if (!set.add(x)) {return true;}}return false;} }

【JavaWeb程序设计】JSP内置对象

目录 一、通过测试以下代码&#xff0c;了解各种隐含对象与作用域变量的使用 1. request隐含对象的使用&#xff08;request.jsp&#xff09; 2. out隐含对象的使用&#xff08;out.jsp&#xff09; 3. application隐含对象的使用&#xff08;application.jsp&#xff09; …

ONLYOFFICE最新8.1版本——桌面编辑器简单测评

前言 大家好&#xff0c;我是小雨&#xff0c;看到最近ONLYOFFICE更新了最新的版本&#xff0c;更新了一下当前版本来具体的测评一下&#xff0c;先来看看官网提供的各类更新信息&#xff0c;下面是我找到的三个主页&#xff0c;包括功能演示链接&#xff0c;官网连接以及专门…

UDP协议:独特之处及其在网络通信中的应用

在网络通信领域&#xff0c;UDP&#xff08;用户数据报协议&#xff0c;User Datagram Protocol&#xff09;是一种广泛使用的传输层协议。与TCP&#xff08;传输控制协议&#xff0c;Transmission Control Protocol&#xff09;相比&#xff0c;UDP具有其独特的特点和适用场景…

Go基础知识

目标 简单介绍一下 GO 语言的诞生背景&#xff0c;使用场景&#xff0c;目前使用方案简单介绍一下 GO的使用&#xff0c;GO的基础语法&#xff0c;简单过一下一些GO的语言例子着重介绍一下GO的特性&#xff0c;为什么大家都使用GO语言&#xff0c;GO的内存结构、为什么都说GO快…

python No interpreter

在 Python 的环境中&#xff0c;如果你遇到了 "No interpreter" 的错误或提示&#xff0c;这通常意味着你的开发环境或IDE&#xff08;如PyCharm、VS Code、Jupyter等&#xff09;没有找到 Python 解释器。要解决这个问题&#xff0c;你可以按照以下步骤操作&#xf…

基于Transformer神经网络的锂离子电池剩余使用寿命估计MATLAB实现【NASA电池数据集】

Transformer神经网络 基于Transformer神经网络的锂离子电池剩余使用寿命估计是一种先进的方法&#xff0c;它利用了Transformer模型在处理序列数据方面的优势。 Transformer能够有效地捕捉时间序列中的长程依赖关系和非线性模式&#xff0c;相比传统的基于循环神经网络&…

InnoDB中的表级锁、页级锁、行级锁详解

MySQL支持三种层级的锁定 我们知道&#xff0c;MySQL支持三种层级的锁定&#xff0c;分别为&#xff1a; 表级锁定 表级锁是MySQL中锁定粒度最大的一种锁&#xff0c;表示对当前操作的整张表加锁&#xff0c;它实现简单&#xff0c;资源消耗较少&#xff0c;被大部分MySQL引…

【C++/STL】优先级队列的介绍与模拟实现仿函数

✨ 万物与我皆是自由诗 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;C学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1…

深入理解TCP协议格式(WireShark分析)

传输控制协议&#xff08;TCP&#xff09;是互联网中最为关键的通信协议之一。了解TCP协议的细节不仅对于网络工程师至关重要&#xff0c;对于任何涉及网络通信的软件开发人员而言都是必备的知识。本文旨在深入探讨TCP协议&#xff0c;从协议的基本概述到其工作机制&#xff0c…

多维度多场景文档门户,鸿翼ECM文档云打造文档管理新范式

​在现代企业运营中&#xff0c;内容协作的效率直接影响到组织的整体表现和竞争力。传统的文档管理系统都是通过目录结构的方式进行文件管理&#xff0c;在实际业务中无法满足用户多视角、多维度、多场景的文档业务需求。因此&#xff0c;搭建结合文档体系的业务门户是许多企业…

AI绘画【光影模型】,穿越赛博迷雾,重塑光影艺术本真魅力

有时候是不是觉得单纯依靠大模型产生的图片作品光线方面平平无奇&#xff0c;依靠提示词&#xff0c;各种权重的调整费了九牛二虎之力才抽到一张感觉还算满意的作品。这个时候我们可以考虑结合相关Lora来进行。今天带来了一款光影氛围灯效果Lora——None-光染摄影&#xff0c;该…

进程的概念

一.进程和程序的理解 首先抛出结论&#xff1a;进程是动态的&#xff0c;暂时存在于内存中&#xff0c;进程是程序的一次执行&#xff0c;而进程总是对应至少一个特定的程序。 程序是静态的&#xff0c;永久的存在于磁盘中。 程序是什么呢&#xff1f;程序其实就是存放在我们…

Windows如何查看端口是否占用,并结束端口进程

需求与问题&#xff1a;前后端配置了跨域操作&#xff0c;但是仍然报错&#xff0c;可以考虑端口被两个程序占用&#xff0c;找不到正确端口或者后端接口书写是否规范&#xff0c;特别是利用Python Flask书写时要保证缩进是否正确&#xff01; Windows操作系统中&#xff0c;查…

Matlab中collectPlaneWave函数的应用

查看文档如下&#xff1a; 可以看出最多5个参数&#xff0c;分别是阵列对象&#xff0c;信号幅度&#xff0c;入射角度&#xff0c;信号频率&#xff0c;光速。 在下面的代码中&#xff0c;我们先创建一个3阵元的阵列&#xff0c;位置为&#xff1a;&#xff08;-1,0,0&#x…

代码随想录算法训练Day57|LeetCode200-岛屿数量、LeetCode695-岛屿的最大面积

岛屿数量 题目描述 力扣200-岛屿数量 给你一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的的二维网格&#xff0c;请你计算网格中岛屿的数量。 岛屿总是被水包围&#xff0c;并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。 此…

设计模式之单例模式(Java)

单例模式实现方式&#xff1a;懒汉式、饿汉式、双重检查、枚举、静态内部类&#xff1b; 懒汉式&#xff1a; /*** 懒汉式单例模式* author: 小手WA凉* create: 2024-07-06*/ public class LazySingleton implements Serializable {private static LazySingleton lazySinglet…

操作系统中的权限说明

什么是权限 权限在操作系统中是一个重要的功能&#xff0c;它允许你控制谁可以读取、写入或执行某个文件。不同的操作系统和文件系统可能有不同的权限模型&#xff0c;但在类Unix系统&#xff08;如Linux和macOS&#xff09;中&#xff0c;文件权限通常由三部分组成&#xff1a…