🎯要点
🎯运动功能: 1 m / s 1 m / s 1m/s上台阶、站立平衡、 1 m / s 1 m / s 1m/s行走、坐椅子、 5 m / s 5 m / s 5m/s跑步、 1 m / s 1 m / s 1m/s爬行、穿越森林、取物、穿越迷宫、 1 m / s 1 m / s 1m/s上滑梯、 5 m / s 5 m / s 5m/s跨栏 | 🎯小范围静态:桌上用勺子、开窗户、桌上插入物品、厨房动作、推动桌上物品、打开柜子抽屉或门、书架取书、玩魔方 | 🎯小范围动态:跳高、举重、投篮、搬运货车物品、开门入室 | 🎯机器人机体主功能布局:感受关节角度和速度和物体姿态和速度 | 🎯全身400多个触觉感应,提供三维数据 | 🎯实验确定指定目标关节位置控制频率
📜协作机器人:Python协作运动机器人刚体力学解耦模型
📜机器人运动学和动力学用例:Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法
📜机器人运动学和动力学用例:Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制
🍇Python连续动作空间算法
此算法使用四个神经网络:Q 网络、确定性策略网络、目标 Q 网络和目标策略网络。Q 网络和策略网络非常类似于简单的 A2C,但在此算法中,参与者直接将状态映射到动作(网络的输出直接为输出),而不是输出离散动作空间中的概率分布。
目标网络是原始网络的延时副本,可以缓慢跟踪学习到的网络。使用这些目标值网络可以大大提高学习的稳定性。原因如下:在不使用目标网络的方法中,网络的更新方程与网络本身计算的值相互依赖,这使其容易发散。例如:
Q
(
s
,
a
)
←
Q
(
s
,
a
)
+
α
[
R
(
s
,
a
)
+
γ
max
Q
(
s
′
,
a
′
)
−
Q
(
s
,
a
)
]
Q(s, a) \leftarrow Q(s, a)+\alpha\left[R(s, a)+\gamma \max Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right]
Q(s,a)←Q(s,a)+α[R(s,a)+γmaxQ(s′,a′)−Q(s,a)]
因此,我们有确定性策略网络和 Q 网络的标准 Actor & Critic 代码结构:
class Critic(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Critic, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, output_size)
def forward(self, state, action):
"""
Params state and actions are torch tensors
"""
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class Actor(nn.Module):
def __init__(self, input_size, hidden_size, output_size, learning_rate = 3e-4):
super(Actor, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, output_size)
def forward(self, state):
"""
Param state is a torch tensor
"""
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
我们将网络和目标网络初始化为:
actor = Actor(num_states, hidden_size, num_actions)
actor_target = Actor(num_states, hidden_size, num_actions)
critic = Critic(num_states + num_actions, hidden_size, num_actions)
critic_target = Critic(num_states + num_actions, hidden_size, num_actions)
for target_param, param in zip(actor_target.parameters(), actor.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(critic_target.parameters(), critic.parameters()):
target_param.data.copy_(param.data)
与深度 Q 学习(以及许多其他 RL 算法)一样,此算法也使用重放缓冲区来采样经验以更新神经网络参数。在每次轨迹展开期间,我们保存所有经验元组(状态、动作、奖励、下一个状态)并将它们存储在有限大小的缓存中——即“重放缓冲区”。然后,当我们更新价值和策略网络时,我们会从重放缓冲区中随机采样小批量经验。
重播缓冲区如下所示:
import random
from collections import deque
class Memory:
def __init__(self, max_size):
self.buffer = deque(maxlen=max_size)
def push(self, state, action, reward, next_state, done):
experience = (state, action, np.array([reward]), next_state, done)
self.buffer.append(experience)
def sample(self, batch_size):
state_batch = []
action_batch = []
reward_batch = []
next_state_batch = []
done_batch = []
batch = random.sample(self.buffer, batch_size)
for experience in batch:
state, action, reward, next_state, done = experience
state_batch.append(state)
action_batch.append(action)
reward_batch.append(reward)
next_state_batch.append(next_state)
done_batch.append(done)
return state_batch, action_batch, reward_batch, next_state_batch, done_batch
def __len__(self):
return len(self.buffer)
值网络的更新与 Q 学习中的更新类似。更新后的Q值由贝尔曼方程得到:
y
i
=
r
i
+
γ
Q
′
(
s
i
+
1
,
μ
′
(
s
i
+
1
∣
θ
μ
′
)
∣
θ
Q
′
)
y_i=r_i+\gamma Q^{\prime}\left(s_{i+1}, \mu^{\prime}\left(s_{i+1} \mid \theta^{\mu^{\prime}}\right) \mid \theta^{Q^{\prime}}\right)
yi=ri+γQ′(si+1,μ′(si+1∣θμ′)∣θQ′)
然而,在此算法中,下一状态Q值是通过目标值网络和目标策略网络来计算的。然后,我们最小化更新后的 Q 值和原始 Q 值之间的均方损失:
Loss
=
1
N
∑
i
(
y
i
−
Q
(
s
i
,
a
i
∣
θ
Q
)
)
2
\text { Loss }=\frac{1}{N} \sum_i\left(y_i-Q\left(s_i, a_i \mid \theta^Q\right)\right)^2
Loss =N1i∑(yi−Q(si,ai∣θQ))2
代码如下:
Qvals = critic.forward(states, actions)
next_actions = actor_target.forward(next_states)
next_Q = critic_target.forward(next_states, next_actions.detach())
Qprime = rewards + gamma * next_Q
critic_loss = nn.MSELoss(Qvals, Qprime)
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
对于策略函数,我们的目标是最大化预期回报:
J
(
θ
)
=
E
[
Q
(
s
,
a
)
∣
s
=
s
t
,
a
t
=
μ
(
s
t
)
]
J(\theta)= E \left[\left.Q(s, a)\right|_{s=s_t, a_t=\mu\left(s_t\right)}\right]
J(θ)=E[Q(s,a)∣s=st,at=μ(st)]
为了计算策略损失,我们取目标函数相对于策略参数的导数。请记住,参与者(策略)函数是可微的,因此我们必须应用链式法则。