Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method--论文笔记

论文笔记

资料

1.代码地址

https://github.com/iBelieveCJM/pseudo_label-pytorch

2.论文地址

3.数据集地址

论文摘要的翻译

本文提出了一种简单有效的深度神经网络半监督学习方法。基本上,所提出的网络是以有监督的方式同时使用标记数据和未标记数据来训练的。对于未标记的数据,只要选取具有最大预测概率的类别,就可以使用伪标签,就好像它们是真标签一样。这实际上等同于熵正则化。它支持类之间的低密度分离,这是半监督学习通常假设的先验条件。在MNIST手写数字数据集上,利用去噪自动编码器和丢弃,这种简单的方法在标签数据非常少的情况下优于传统的半监督学习方法。

1背景

所有训练深度神经网络的成功方法都有一个共同点:它们都依赖于无监督学习算法。大多数工作分两个主要阶段进行。在第一阶段,无监督预训练,所有层的权重通过这种分层的无监督训练来初始化。在第二阶段,微调,在有监督的方式下,使用反向传播算法用标签全局地训练权值。所有这些方法也都以半监督的方式工作。我们只需要使用额外的未标记数据来进行无监督的预训练。
我们提出了一种更简单的半监督方式训练神经网络的方法。基本上,所提出的网络是以有监督的方式同时使用标记数据和未标记数据来训练的。对于未标记的数据,只需选取每次权重更新具有最大预测概率的类,就像使用真标签一样使用伪标签。该方法原则上可以结合几乎所有的神经网络模型和训练方法。
这种方法实际上等同于熵正则化(Granvalet等人,2006年)。类概率的条件熵可用于类重叠的度量。通过最小化未标记数据的熵,可以减少类概率分布的重叠性。它支持类之间的低密度分离,这是半监督学习的常见先验假设。

2论文的创新点

3 论文方法的概述

3.1 思路

伪标签是未标记数据的目标类,就好像它们是真标签一样。我们只选取对每个未标记样本具有最大预测概率的类别。
y i ′ = { 1 if  i = argmax i ′ f i ′ ( x ) 0 otherwise y_i^{\prime}=\begin{cases}1&\text{if }i=\text{argmax}_{i'}f_{i'}(x)\\0&\text{otherwise}\end{cases} yi={10if i=argmaxifi(x)otherwise我们在Dropout的微调阶段使用伪标签。用标记和未标记的数据同时以有监督的方式训练预先训练的网络。对于未标记的数据,每次权值更新重新计算的伪标签被用于相同的监督学习任务的损失函数。
由于有标签数据和无标签数据的总数有很大不同,并且它们之间的训练平衡对网络性能非常重要,因此总体损失函数为 L = 1 n ∑ m = 1 n ∑ i = 1 C L ( y i m , f i m ) + α ( t ) 1 n ′ ∑ m = 1 n ′ ∑ i = 1 C L ( y i ′ m , f i ′ m L=\frac{1}{n}\sum_{m=1}^{n}\sum_{i=1}^{C}L(y_{i}^{m},f_{i}^{m})+\alpha(t)\frac{1}{n'}\sum_{m=1}^{n'}\sum_{i=1}^{C}L(y_{i}^{\prime m},f_{i}^{\prime m} L=n1m=1ni=1CL(yim,fim)+α(t)n1m=1ni=1CL(yim,fim
其中n是SGD的已标记数据中的批次数, n ′ n\prime n用于未标记数据, f i m f^m_i fim是已标记数据中 m m m个样本的输出单位, y i m y^m_i yim是标签, f i ′ m f^{\prime m}_{i} fim用于未标记数据, y i ′ m y^{\prime m}_{i} yim是未标记数据的伪标签, α ( t ) \alpha(t) α(t)是平衡它们的系数。
α ( t ) \alpha(t) α(t)的合理调度对网络性能非常重要。如果 α ( t ) \alpha(t) α(t)太高,即使对于已标记的数据,也会干扰训练。而如果 α ( t ) \alpha(t) α(t)太小了,我们就不能利用未标记数据的好处。此外, α ( t ) \alpha(t) α(t)缓慢增加的确定性退火过程有望帮助优化过程避免较差的局部极小值,从而使未标记数据的伪标签尽可能类似于真实标签。 α ( t ) = { 0 t < T 1 t − T 1 T 2 − T 1 α f T 1 ≤ t < T 2 α f T 2 ≤ t \alpha(t)=\begin{cases}0&t<T_1\\\frac{t-T_1}{T_2-T_1}\alpha_f&T_1\leq t<T_2\\\alpha_f&T_2\leq t\end{cases} α(t)= 0T2T1tT1αfαft<T1T1t<T2T2t α f {\alpha}_f αf=3、 T 1 T_1 T1=100、 T 2 T_2 T2=600的情况下,不进行预训练;在DAE的情况下, T 1 T_1 T1=200、 T 2 T_2 T2=800。

3.2 Pseudo-Label为什么有效?

半监督学习的目标是利用未标记的数据来提高泛化性能。聚集学习假设指出,决策边界应位于低密度区域,以提高泛化性能。
最近提出的使用流形学习训练神经网络的方法,如半监督嵌入和流形切线分类器,都利用了这一假设。半监督嵌入使用基于嵌入的正则化来提高深度神经网络的泛化性能。由于数据样本的邻居通过嵌入惩罚项与样本具有相似的激活,因此高密度区域的数据样本更有可能具有相同的标签。流形切线分类器鼓励网络输出对低维流形方向的变化不敏感。因此,同样的目的也达到了。

3.3 Entropy Regularization

在最大后验估计的框架下,熵正则化是一种从未标记数据中获益的方法。该方案通过最小化未标记数据的类概率的条件熵来支持类之间的低密度分离,而不需要对密度进行任何建模。 H ( y ∣ x ′ ) = − 1 n ′ ∑ m = 1 n ′ ∑ i = 1 C P ( y i m = 1 ∣ x ′ m ) log ⁡ P ( y i m = 1 ) H(y|x')=-\frac{1}{n'}\sum_{m=1}^{n'}\sum_{i=1}^{C}P(y_{i}^{m}=1|x'^{m})\operatorname{log}P(y_{i}^{m}=1) H(yx)=n1m=1ni=1CP(yim=1∣xm)logP(yim=1)
其中 n ′ n^\prime n是未标记数据的数目, C C C是类数, y i m y^m_i yim是第 m m m个未标记样本的未知标记, x ′ m x^{\prime m} xm是第m个未标记样本的输入向量,熵是类重叠的一种度量。随着类重叠的减少,决策边界上的数据点密度变得更低。
MAP估计被定义为后验分布的最大值: C ( θ , λ ) = ∑ m = 1 n log ⁡ P ( y m ∣ x m ; θ ) − λ H ( y ∣ x ′ ; θ ) C(\theta,\lambda)=\sum_{m=1}^n\log P(y^m|x^m;\theta)-\lambda H(y|x';\theta) C(θ,λ)=m=1nlogP(ymxm;θ)λH(yx;θ)
其中n是标记数据的数目, x m x^m xm是第 m m m个标记样本, λ λ λ是平衡两项的系数。通过最大化已标记数据(第一项)的条件对数似然和最小化未标记数据(第二项)的熵,可以获得更好的泛化性能。
图1示出了t-SNE 在MNIST测试数据(未包括在未标记数据中)的网络输出的2D嵌入结果。神经网络用600个已标记数据以及60000个未标记数据和伪标签进行训练。虽然在两种情况下训练误差为零,但通过使用未标记数据和伪标签进行训练,测试数据的网络输出更接近于1-OFK码,换言之,(17)的熵被最小化。
在这里插入图片描述
表2显示了(17)的估计熵。虽然两种情况下已标记数据的熵都接近于零,但通过伪标签训练,未标记数据的熵变低,另外,测试数据的熵也随之降低。这使得分类问题变得更容易,甚至对于测试数据也是如此,并且使得决策边界处的数据点密度更低。根据聚类假设,我们可以得到更好的泛化性能。
在这里插入图片描述

3.4 Training with Pseudo-Label as Entropy Regularization

我们的方法通过对未标记数据和伪标签的训练,鼓励预测的类别概率接近K中的1-of-code,从而使公式(17)的熵最小。因此,我们的方法等价于熵正则化。(18)的第一项对应于(15)的第一项,(18)的第二项对应于(15)的第二项,α对应于λ。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/776381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ANN文献综述

人工神经网络文献综述 摘要 人工神经网络&#xff08;Artificial Neural Networks, ANNs&#xff09;是由多个简单的、相互连接的处理单元组成的自适应系统&#xff0c;通过调整这些单元之间的连接强度&#xff0c;ANNs能够实现对复杂数据的建模和预测。本文综述了ANNs的基本…

excel批量修改一列单价的金额并保留1位小数

1.打开表格&#xff0c;要把单价金额变成现在的两倍&#xff0c;数据如下&#xff1a; 2.把单价这一列粘贴到一个新的sheet页面&#xff0c;在B2单元格输入公式&#xff1a;A2*2 然后按enter回车键,这时候吧鼠标放到B2单元格右下角&#xff0c;会出现一个黑色的小加号&#xf…

安装Linux虚拟机

点击创建新的虚拟机 选择高级 系统自定义推荐 选择稍后安装 选择Linux 虚拟机命名并且选择创建位置 系统自定义 系统自定义推荐 系统自定义推荐 选择安装好的iOS文件 点击完成 选择编辑虚拟机设置 进入后选择第一个Install red hat enterprise 选择常用语言 设置…

用户体验驱动开发:打造卓越数字产品的关键

目录 前言1. 用户体验驱动开发的定义1.1 用户体验的核心要素1.2 用户体验与用户界面 2. 用户体验驱动开发的重要性2.1 提升用户满意度2.2 增加用户忠诚度2.3 提升市场竞争力2.4 提高商业成功率 3. 用户体验驱动开发的方法论3.1 用户研究3.2 信息架构3.3 交互设计3.4 可用性测试…

一道有意思的简单题 [NOIP2010 普及组] 接水问题

题目&#xff1a; 题解&#xff1a; 每一次新来的同学的接水时间都加在现在已有的水龙头中接水时间最短的&#xff0c;总时间就为n次操作后水龙头中接水时间的最长值。 #include<bits/stdc.h> using namespace std; multiset<int>s;int main(){int n,m;scanf(&qu…

PMP–知识卡片--PDCA循环

记忆 PDCA&#xff1a;计划执行检查调整&#xff0c;计划观察动作&#xff1b;plan do check action 定义 PDCA循环的含义是将质量管理分为四个过程&#xff0c;即计划&#xff08;Plan&#xff09;、执行&#xff08;Do&#xff09;、检查&#xff08;Check&#xff09;、处…

美光科技在2024年1γ工艺技术在10纳米级别启动EUV试产

美光科技&#xff08;Micron&#xff09;在2024年针对其1γ&#xff08;1-gamma&#xff09;工艺技术在10纳米级别启动EUV&#xff08;极紫外光刻&#xff09;试产&#xff0c;这标志着存储行业巨头在EUV采用上的重要一步&#xff0c;尽管相比英特尔和台积电等其他半导体制造商…

查看java版本和安装位置-cnblog

查看java位置 进入设置&#xff0c;高级系统设置 打开环境变量 找到path双击 查看java版本 java -version

实验3-Spark基础-Spark的安装

文章目录 1. 下载安装 Scala1.1 下载 Scala 安装包1.2 基础环境准备1.3 安装 Scala 2. 下载安装 Spark2.1 下载 Spark 安装包2.2 安装 Spark2.3 配置 Spark2.4 创建配置文件 spark-env.sh 3. pyspark 启动4. 建立/user/spark文件夹 1. 下载安装 Scala 1.1 下载 Scala 安装包 下…

Spring学习04-[Spring容器核心技术AOP学习]

AOP学习 AOP介绍使用对业务方法添加计算时间的增强 EnableAspectJAutoProxyAOP的术语通知前置通知Before后置通知After返回通知AfterReturning AOP介绍 如何在Spring中创建一个所谓切面? AspectComponent通知切点切面里面的代码怎么运行在业务方法(之前、之后)&#xff1f; 通…

Redis 八股文

标题 1. Redis主从同步原理&#xff1a;判断下线的条件:故障转移如何保证Sentinel高可用 1. Redis主从同步原理&#xff1a; 1、slave执行命令向master建立连接 2、master执行bgsave&#xff08;后台存储&#xff09;&#xff0c;生成rdb快照&#xff08;redis备份方式&#x…

Git基础知识与常用命令指南

这是一个Git基础知识和常用命令的简要指南,涵盖了日常开发中最常用的操作。你可以将这个指南保存下来,作为日常工作的参考。 目录 基础篇1. Git基本概念2. 配置Git3. 创建仓库4. 基本的工作流程5. 分支操作6. 查看历史7. 撤销更改8. 远程仓库操作 Git进阶知识与技巧指南1. 分…

重温react-13(嵌套路由和重定向等)

重定向和404 import React from react; import { Routes, Route, Link,NavLink ,Navigate} from react-router-dom; import Home from ./Home/Home import About from ./About/About import News from ./News/News import NotFound from ./NotFound/NotFound; export default …

数据结构——单向循环链表

文章目录 1. 概念 2. 区别 2.1 结构区别 2.2 访问方式区别 2.3 优缺点对比 3. 流程 4. 基本操作 5. 代码示例 1. 概念 单向循环链表是一种特殊的单链表&#xff0c;其中最后一个节点的后继指针指向头节点&#xff0c;形成一个环。单向循环链表适合用于需要循环访问数据…

Qt 基础组件速学 鼠标和键盘事件

学习目标&#xff1a; 鼠标事件和键盘事件应用 前置环境 运行环境:qt creator 4.12 学习内容和效果演示&#xff1a; 1.鼠标事件 根据鼠标的坐标位置&#xff0c;做出对应的事件。 2.键盘事件 根据键盘的输入做出对应操作 详细主要代码 1.鼠标事件 #include "main…

C++新特性

C新特性主要体现在语法改进和标准库扩充两个方面。以下是一些主要的C新特性&#xff1a; 语法改进 统一的初始化方法&#xff1a;C11扩大了用大括号括起的列表&#xff08;初始化列表&#xff09;的使用范围&#xff0c;使其可用于所有的内置类型和用户自定义的类型。这种定义…

vue.js微商城后台管理系统

一.需要运行的效果 20240701-231456 二.代码&#xff08;解析&#xff09; 首先&#xff0c;为项目添加依赖&#xff1a; yarn add element-plus --save yarn vue-router4 --save 新建一个项目包&#xff0c;然后命名为商品管理&#xff0c;在components中新建几个vue文件。 …

全新UI自助图文打印系统小程序源码 PHP后端 附教程

最新自助图文打印系统和证件照云打印小程序源码PHP后端&#xff0c;为用户用户自助打印的服务&#xff0c;包括但不限于文档、图片、表格等多种格式的文件。此外&#xff0c;它们还提供了诸如美颜、换装、文档打印等功能&#xff0c;以及后台管理系统&#xff0c;方便管理员对打…

TreeMap、HashMap 和 LinkedHashMap 的区别

TreeMap、HashMap 和 LinkedHashMap 的区别 1、HashMap2、LinkedHashMap3、TreeMap4、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在 Java 中&#xff0c;TreeMap、HashMap 和 LinkedHashMap 是三种常用的集合类&#xff0c;它们在…

Ubuntu配置GitHub(第一次clone/push)

文章目录 1. 安装Git&检查连接2. 注册GitHub3. 生成&GitHub添加SSH3.1. 检查&删除已有id_rsa3.2. 生成SSH3.3. GitHub添加id_rsa.pub SSH3.4. 检查SSH 4. 继续开发可以参考参考 1. 安装Git&检查连接 安装 sudo apt-get install git检查SSH连接 ssh -T gitgi…