昇思25天学习打卡营第16天|文本解码原理——以MindNLP为例

在大模型中,文本解码通常是指在自然语言处理(NLP)任务中使用的大型神经网络模型(如Transformer架构的模型)将编码后的文本数据转换回可读的原始文本的过程。这些模型在处理自然语言时,首先将输入文本(如一段话或一个句子)编码成高维空间中的向量表示,这些向量能够捕捉到文本的语义和上下文信息。

在编码过程中,模型通过多层神经网络将文本的每个字符、单词或标记(token)转换成对应的向量。这些向量随后在模型的解码阶段被处理,以生成或选择最合适的序列来表示原始文本的含义。例如,在机器翻译任务中,解码阶段会生成目标语言的文本;在文本摘要任务中,解码阶段会生成原文的摘要;在问答系统中,解码阶段会生成问题的答案。

 一、自回归语言模型:

1、根据前文预测下一个单词:

2、一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积 :

  • w_0:初始上下文单词序列
  • T:时间步
  • 当生存ESO标签时停止生成 

3、MindNLP/huggingface Transformers提供的文本生成方法:

 二、环境准备:

首先还是需要下载MindSpore,相关教程可以参考我昇思25天学习打卡营第1天|快速入门这篇博客,之后就需要使用pip命令在终端卸载mindvision和mindinsight包之后,下载mindnlp:

pip uninstall mindvision -y
pip uninstall mindinsight -y

pip install mindnlp

相关依赖下载完成之后,就可以开始我们下面的实验了!

三、Greedy Search:

在每个时间步𝑡都简单地选择概率最高的词作为当前输出词:

wt = argmax_w P(w|w(1:t-1))

按照贪心搜索输出序列("The","nice","woman") 的条件概率为:0.5 x 0.4 = 0.2

缺点: 错过了隐藏在低概率词后面的高概率词,如:dog=0.5, has=0.9 ![image.png](attachment:image.png =600x600)

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

# generate text until the output length (which includes the context length) reaches 50
greedy_output = model.generate(input_ids, max_length=50)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0], skip_special_tokens=True))

四、Beam Search:

Beam search通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。如图以 num_beams=2 为例:

("The","dog","has") : 0.4 * 0.9 = 0.36

("The","nice","woman") : 0.5 * 0.4 = 0.20

优点:一定程度保留最优路径

缺点:1. 无法解决重复问题;2. 开放域生成效果差

from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

# activate beam search and early_stopping
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    early_stopping=True
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')

# set no_repeat_ngram_size to 2
beam_output = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    early_stopping=True
)

print("Beam search with ngram, Output:\n" + 100 * '-')
print(tokenizer.decode(beam_output[0], skip_special_tokens=True))
print(100 * '-')

# set return_num_sequences > 1
beam_outputs = model.generate(
    input_ids, 
    max_length=50, 
    num_beams=5, 
    no_repeat_ngram_size=2, 
    num_return_sequences=5, 
    early_stopping=True
)

# now we have 3 output sequences
print("return_num_sequences, Output:\n" + 100 * '-')
for i, beam_output in enumerate(beam_outputs):
    print("{}: {}".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
print(100 * '-')

 

缺点的具体表现:

重复性高,这个看我生成的例子就可以很清楚的看到,着几句话几乎一模一样,还有就是开放域的问题,可以看下图:

 

五、超参数:

由于普通的默认索引均存在着难以克服的问题,人们通常会使用各种超参数来减小索引缺陷的影响。

1、n_gram惩罚:

将出现过的候选词的概率设置为 0

设置no_repeat_ngram_size=2 ,任意 2-gram 不会出现两次

Notice: 实际文本生成需要重复出现

 2、Sample:

根据当前条件概率分布随机选择输出词w_t

优点:文本生成多样性高

缺点:生成文本不连续

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

 

3、Temperature:

降低softmax 的temperature使 P(w∣w1:t−1​)分布更陡峭,以增加高概率单词的似然并降低低概率单词的似然。

 

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(1234)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=0,
    temperature=0.7
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

 

4、Topk Sample:

选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样,确定就是:将采样池限制为固定大小 K 导致在分布比较尖锐的时候产生胡言乱语和在分布比较平坦的时候限制模型的创造力。

 

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# activate sampling and deactivate top_k by setting top_k sampling to 0
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_k=50
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

5、Top_P Sample:

在累积概率超过概率 p 的最小单词集中进行采样,重新归一化,缺点就是:采样池可以根据下一个词的概率分布动态增加和减少。

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)

# deactivate top_k sampling and sample only from 92% most likely words
sample_output = model.generate(
    input_ids, 
    do_sample=True, 
    max_length=50, 
    top_p=0.92, 
    top_k=0
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(sample_output[0], skip_special_tokens=True))

 6、Top_k_Top_p:

import mindspore
from mindnlp.transformers import GPT2Tokenizer, GPT2LMHeadModel

tokenizer = GPT2Tokenizer.from_pretrained("iiBcai/gpt2", mirror='modelscope')

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained("iiBcai/gpt2", pad_token_id=tokenizer.eos_token_id, mirror='modelscope')

# encode context the generation is conditioned on
input_ids = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='ms')

mindspore.set_seed(0)
# set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3
sample_outputs = model.generate(
    input_ids,
    do_sample=True,
    max_length=50,
    top_k=5,
    top_p=0.95,
    num_return_sequences=3
)

print("Output:\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
  print("{}: {}".format(i, tokenizer.decode(sample_output, skip_special_tokens=True)))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775703.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自闭症儿童的治疗方法有哪些?

身为星贝育园自闭症儿童康复学校的资深教育者,我深知自闭症谱系障碍(ASD)儿童的教育与治疗需要一个全面、个性化的方案。在星贝育园,我们致力于为孩子们提供一个充满爱与理解的环境,采用多种科学验证的教育方法&#x…

【Java11】变量的初始化和内存中的运行机制

成员变量的初始化和内存中的运行机制 系统加载类或创建类的实例时,系统自动为成员变量分配内存空间,然后自动为成员变量指定初始值。 class Person {public String name; // 实例变量public static int eyeNum; // 类变量 }var p1 Person(); var p2 …

动态线程池思想学习及实践

引言 在后台项目开发过程中,我们常常借助线程池来实现多线程任务,以此提升系统的吞吐率和响应性;而线程池的参数配置却是一个难以合理评估的值,虽然业界也针对CPU密集型,IO密集型等场景给出了一些参数配置的经验与方案…

MQ:RabbitMQ

同步和异步通讯 同步通讯: 需要实时响应,时效性强 耦合度高 每次增加功能都要修改两边的代码 性能下降 需要等待服务提供者的响应,如果调用链过长则每次响应时间需要等待所有调用完成 资源浪费 调用链中的每个服务在等待响应过程中,不能释放请求占用的资源,高并发场景下…

【后端面试题】【中间件】【NoSQL】MongoDB查询优化2(优化排序、mongos优化)

优化排序 在MongoDB里面,如果能够利用索引来排序的话,直接按照索引顺序加载数据就可以了。如果不能利用索引来排序的话,就必须在加载了数据之后,再次进行排序,也就是进行内存排序。 可想而知,如果内存排序…

【RT-thread studio 下使用STM32F103-学习sem-信号量-初步使用-线程之间控制-基础样例】

【RT-thread studio 下使用STM32F103-学习sem-信号量-初步使用-线程之间控制-基础样例】 1、前言2、环境3、事项了解(1)了解sem概念-了解官网消息(2)根据自己理解,设计几个使用方式(3)不建议运行…

DataWhale-吃瓜教程学习笔记 (七)

学习视频**:第6章-支持向量机_哔哩哔哩_bilibili 西瓜书对应章节: 第六章 支持向量机 - 算法原理 几何角度 对于线性可分数据集,找距离正负样本距离都最远的超平面,解是唯一的,泛化性能较好 - 超平面 - 几何间隔 例…

堆叠的作用

一、为什么要堆叠 传统的园区网络采用设备和链路冗余来保证高可靠性,但其链路利用率低、网络维护成本高,堆叠技术将多台交换机虚拟成一台交换机,达到简化网络部署和降低网络维护工作量的目的。 二、堆叠优势 1、提高可靠性 堆叠系统多台成…

ServiceImpl中的参数封装为Map到Mapper.java中查询

ServiceImpl中的参数封装为Map到Mapper.java中查询,可以直接从map中获取到key对应的value

【Python机器学习】处理文本数据——多个单词的词袋(n元分词)

使用词袋表示的主要缺点之一就是完全舍弃了单词顺序。因此“its bad,not good at all”和“its good,not bad at all”这两个字符串的词袋表示完全相同,尽管它们的含义相反。幸运的是,使用词袋表示时有一种获取上下文的方法&#…

LeetCode热题100刷题3:3. 无重复字符的最长子串、438. 找到字符串中所有字母异位词、560. 和为 K 的子数组

3. 无重复字符的最长子串 滑动窗口、双指针 class Solution { public:int lengthOfLongestSubstring(string s) {//滑动窗口试一下//英文字母、数字、符号、空格,ascii 一共包含128个字符vector<int> pos(128,-1);int ans 0;for(int i0,j0 ; i<s.size();i) {//s[i]…

全端面试题15(canvas)

在前端开发领域&#xff0c;<canvas> 元素和相关的 API 是面试中经常被提及的主题。下面是一些常见的关于 HTML5 Canvas 的面试问题及解答示例&#xff1a; 1. 什么是 <canvas> 元素&#xff1f; <canvas> 是 HTML5 引入的一个用于图形渲染的标签。它本身并…

能否免费使用Adobe XD?

Adobe XD不是免费的。Adobe 目前XD采用订阅模式&#xff0c;提供订阅模式 7 每天试用期结束后需要付费购买&#xff0c;具体价格根据不同的订阅计划确定&#xff0c;包括每月购买&#xff0c;包括 9.99 美元或每月 99.99 美元&#xff0c;或者选择购买Adobe CreativeCloud整体订…

【qt】如何通过域名获得IP地址?

域名是什么呢?像www.baidu.com的baidu.com就是域名. 域名相当于是网站的门牌号. 域名可以通过 DNS 解析将其转换为对应的 IP 地址. 用我们获取IP地址的方式就可以,但是现在没有可以用另一种方法. 槽函数的实现: void MainWindow::lookupHost(const QHostInfo &hostInf…

Python学习笔记29:进阶篇(十八)常见标准库使用之质量控制中的数据清洗

前言 本文是根据python官方教程中标准库模块的介绍&#xff0c;自己查询资料并整理&#xff0c;编写代码示例做出的学习笔记。 根据模块知识&#xff0c;一次讲解单个或者多个模块的内容。 教程链接&#xff1a;https://docs.python.org/zh-cn/3/tutorial/index.html 质量控制…

RedHat / CentOS安装FTP服务

本章教程,记录在RedHat / CentOS中安装FTP的具体步骤。FTP默认端口:21 1、安装 epel 源 yum install -y epel-release2、安装 pure-ftpd yum -y install pure-ftpd3、修改默认配置 # 默认配置位于 /etc/pure-ftpd/pure-ftpd.conf,在配置文件中找到下面几个参数进行修改:#…

并发、多线程和HTTP连接之间有什么关系?

一、并发的概念 并发是系统同时处理多个任务或事件的能力。在计算中&#xff0c;这意味着系统能够在同一时间段内处理多个任务&#xff0c;而不是严格按照顺序一个接一个地执行它们。并发提高了系统的效率和资源利用率&#xff0c;从而更好地满足用户的需求。在现代应用程序中&…

C++ windows下使用openvino部署yoloV8

目录 准备版本&#xff1a; 准备事项: 选择配置界面&#xff1a; 下载界面&#xff1a; ​编辑 添加VS配置&#xff1a; 准备代码&#xff1a; yolov8.h yolov8.cpp detect.cpp 如何找到并放置DLL&#xff1a; 准备版本&#xff1a; opencv 4.6.0 openvino 2024.0…

深度解读:Etched Sohu与Groq LPU芯片的区别

本文简单讲解一下Etched Sohu与Groq LPU两种芯片的区别。 设计理念的差异 首先&#xff0c;这两款产品在设计理念上完全是两条不同的路线。Etched Sohu芯片的设计理念是围绕Transformer模型进行优化。Transformer模型近年来在NLP任务中表现出色&#xff0c;Etched公司因此为其…

SpringSecurity中文文档(Servlet Password Storage)

存储机制&#xff08;Storage Mechanisms&#xff09; 每种支持的读取用户名和密码的机制都可以使用任何支持的存储机制&#xff1a; Simple Storage with In-Memory AuthenticationRelational Databases with JDBC AuthenticationCustom data stores with UserDetailsServic…