使用python对图像加噪声

加上雨点噪声

import cv2
import numpy as np
 
 
def get_noise(img, value=10):
    '''
    #生成噪声图像
    >>> 输入: img图像
        value= 大小控制雨滴的多少 
    >>> 返回图像大小的模糊噪声图像
    '''
 
    noise = np.random.uniform(0, 256, img.shape[0:2])
    # 控制噪声水平,取浮点数,只保留最大的一部分作为噪声
    v = value * 0.01
    noise[np.where(noise < (256 - v))] = 0
 
    # 噪声做初次模糊
    k = np.array([[0, 0.1, 0],
                  [0.1, 8, 0.1],
                  [0, 0.1, 0]])
 
    noise = cv2.filter2D(noise, -1, k)
 
    # 可以输出噪声看看
    '''cv2.imshow('img',noise)
    cv2.waitKey()
    cv2.destroyWindow('img')'''
    return noise

def rain_blur(noise, length=10, angle=0,w=1):
    '''
    将噪声加上运动模糊,模仿雨滴
    
    >>>输入
    noise:输入噪声图,shape = img.shape[0:2]
    length: 对角矩阵大小,表示雨滴的长度
    angle: 倾斜的角度,逆时针为正
    w:      雨滴大小
    
    >>>输出带模糊的噪声
    
    '''
    
    
    #这里由于对角阵自带45度的倾斜,逆时针为正,所以加了-45度的误差,保证开始为正
    trans = cv2.getRotationMatrix2D((length/2, length/2), angle-45, 1-length/100.0)  
    dig = np.diag(np.ones(length))   #生成对焦矩阵
    k = cv2.warpAffine(dig, trans, (length, length))  #生成模糊核
    k = cv2.GaussianBlur(k,(w,w),0)    #高斯模糊这个旋转后的对角核,使得雨有宽度
    
    #k = k / length                         #是否归一化
    
    blurred = cv2.filter2D(noise, -1, k)    #用刚刚得到的旋转后的核,进行滤波
    
    #转换到0-255区间
    cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
    blurred = np.array(blurred, dtype=np.uint8)
    
    return blurred



def alpha_rain(rain,img,beta = 0.8):
    
    #输入雨滴噪声和图像
    #beta = 0.8   #results weight
    #显示下雨效果
    
    #expand dimensin
    #将二维雨噪声扩张为三维单通道
    #并与图像合成在一起形成带有alpha通道的4通道图像
    rain = np.expand_dims(rain,2)
    rain_effect = np.concatenate((img,rain),axis=2)  #add alpha channel
 
    rain_result = img.copy()    #拷贝一个掩膜
    rain = np.array(rain,dtype=np.float32)     #数据类型变为浮点数,后面要叠加,防止数组越界要用32位
    rain_result[:,:,0]= rain_result[:,:,0] * (255-rain[:,:,0])/255.0 + beta*rain[:,:,0]
    rain_result[:,:,1] = rain_result[:,:,1] * (255-rain[:,:,0])/255 + beta*rain[:,:,0] 
    rain_result[:,:,2] = rain_result[:,:,2] * (255-rain[:,:,0])/255 + beta*rain[:,:,0]
    #对每个通道先保留雨滴噪声图对应的黑色(透明)部分,再叠加白色的雨滴噪声部分(有比例因子)
    
    cv2.imwrite('rain_result.png', np.uint8(rain_result))


img = cv2.imread('cv.png')
noise = get_noise(img,value=500)
rain = rain_blur(noise,length=50,angle=-30,w=3)
alpha_rain(rain,img,beta=0.6)

在这里插入图片描述

在这里插入图片描述

加上光斑噪声

利用一张光斑的图像加在原始图像上:

import numpy as np
import cv2
from PIL import Image

image1 = cv2.imread('cub1.jpg')
image2 = cv2.imread('ban.jpg')

height = image1.shape[0]
width = image1.shape[1]
image2 = cv2.resize(image2, (width, height), interpolation = cv2.INTER_LINEAR)
image = (image1 + image2) // 2

cv2.imwrite('cv.png', np.uint8(image))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77543.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

苹果支付的实现

由于app经常需要用到支付功能&#xff0c;然而ios用户&#xff0c;是无法用支付宝、微信进行支付&#xff0c;这时候只能用到苹果支付。苹果支付是苹果公司推出的一种在线支付方式&#xff0c;用户可以通过苹果支付购买应用、内购道具等等。 原理 苹果支付的实现原理是通过在…

二十二、责任链模式

目录 1、使用demo演示责任链模式2、传统方案解决oa系统审批3、传统方案解决oa系统审批存在的问题4、职责链模式基本介绍5、职责链模式原理类图6、职责链模式解决oa系统采购审批7、职责链模式的注意事项和细节8、职责链模式的实际使用场景举例 1、使用demo演示责任链模式 学校o…

《论文阅读14》FAST-LIO

一、论文 研究领域&#xff1a;激光雷达惯性测距框架论文&#xff1a;FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter IEEE Robotics and Automation Letters, 2021 香港大学火星实验室 论文链接论文github 二、论文概…

Qt 杂项(Qwt、样式等)

Qt隐藏窗口边框 this->setWindowFlags(Qt::FramelessWindowHint);Qt模态框 this->setWindowModality(Qt::ApplicationModal);QLable隐藏border 代码中设置 lable->setStyleSheet("border:0px");或者UI中直接设置样式&#xff1a;“border:0px” Qwt开源…

SRS流媒体服务(四)WebRTC实现实时视频通话和低延时互动直播

CentOS版本号&#xff1a;7.9 SRS版本号&#xff1a;4.0.215 服务器IP&#xff1a;192.168.5.104 注意需要开启端口号&#xff1a;1935、1985、8000&#xff08;UDP端口&#xff09;、8080。 注意需要开启服务&#xff1a;http 文章目录 webRTC介绍getUserMediaRTCPeerCon…

SpringBoot复习:(42)WebServerCustomizer的customize方法是在哪里被调用的?

ServletWebServletAutoConfiguration类定义如下&#xff1a; 可以看到其中通过Import注解导入了其内部类BeanPostProcessorRegister。 BeanPostProcessor中定义的registerBeanDefinition方法会被Spring容器调用。 registerBeanDefinitions方法调用了RegistrySyntheticBeanIf…

尚硅谷css3笔记

目录 一、新增长度单位 二、新增盒子属性 1.border-box 怪异盒模型 2.resize 调整盒子大小 3.box-shadow 盒子阴影 案例&#xff1a;鼠标悬浮盒子上时&#xff0c;盒子有一个过度的阴影效果 三、新增背景属性 1.background-origin 设置背景图的原点 2.background-clip 设置背…

案例18 基于Spring Boot+MyBatis的图书信息维护案例

一、案例需求 基于Spring BootMyBatis实现图书信息的新增、修改、删除、查询功能&#xff0c;并实现MySQL数据库的操作。 MySQL数据库创建图书表&#xff08;t_book&#xff09;&#xff0c;图书表有主键、图书名称、图书类别、作者、出版社、简介信息。 二、数据初始化 创建…

回归预测 | MATLAB实现GRU门控循环单元多输入多输出

回归预测 | MATLAB实现GRU门控循环单元多输入多输出 目录 回归预测 | MATLAB实现GRU门控循环单元多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出&#xff0c;数据为多输入多输出预测数据&#xff0c;输入10个…

fastApi基础

1、fastApi简介 官方文档&#xff1a;https://fastapi.tiangolo.com/ 源码&#xff1a; https://github.com/tiangolo/fastapi 2、环境准备 安装python 安装pycharm 安装fastAPI 安装 uvicorn 查看已经安装的第三方库&#xff1a;pip list 查看pip 配置信息&#xff1a;pip co…

【Apollo】赋能移动性:阿波罗自动驾驶系统的影响

前言 Apollo (阿波罗)是一个开放的、完整的、安全的平台&#xff0c;将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统&#xff0c;快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、…

以 Java NIO 的角度理解 Netty

文章目录 前言Java NIO 工作原理Selector 的创建ServerSocketChannel 的创建ServerSocketChannel 注册 Selector对事件的处理总结 前言 上篇文章《Netty 入门指南》主要涵盖了 Netty 的入门知识&#xff0c;包括 Netty 的发展历程、核心功能与组件&#xff0c;并且通过实例演示…

数据结构:栈和队列(超详细)

目录 ​编辑 栈&#xff1a; 栈的概念及结构&#xff1a; 栈的实现&#xff1a; 队列&#xff1a; 队列的概念及结构&#xff1a; 队列的实现&#xff1a; 扩展知识&#xff1a; 以上就是个人学习线性表的个人见解和学习的解析&#xff0c;欢迎各位大佬在评论区探讨&#…

UDP数据报结构分析(面试重点)

在传输层中有UDP和TCP两个重要的协议&#xff0c;下面将针对UDP数据报的结构进行分析 UDP结构图示 UDP报头结构的分析 UDP报头有4个属性&#xff0c;分别是源端口&#xff0c;目的端口&#xff0c;UDP报文长度&#xff0c;校验和&#xff0c;它们都占16位2个字节&#xff0c;所…

pycorrector一键式文本纠错工具,整合了BERT、MacBERT、ELECTRA、ERNIE等多种模型,让您立即享受纠错的便利和效果

pycorrector&#xff1a;一键式文本纠错工具&#xff0c;整合了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer、T5等多种模型&#xff0c;让您立即享受纠错的便利和效果 pycorrector: 中文文本纠错工具。支持中文音似、形似、语法错误纠正&#xff0c;pytho…

kaggle注册不显示验证码

edge浏览器 1.点击浏览器右上角三个点 2.点击扩展 3.点击管理扩展 4.点击获取Microsoft Edge扩展&#xff0c;在左上角输入Head Editor 5.输入https://www.azurezeng.com/static/HE-GoogleRedirect.json 6.下载后&#xff0c;点保存 成功&#xff01;

Git分布式版本控制系统基础概念

前言 我们在大学毕业写论文的时候碰到过如下的现象&#xff1a; <<毕业论文第一版.doc>> <<毕业论文第二版.doc>> <<毕业论文第三版.doc>> <<毕业论文最终版.doc>> <<毕业论文完结版.doc>> 你的论文会不断地修改…

JVM - 垃圾收集器

目录 垃圾收集器 串行垃圾收集器 并行垃圾收集器 什么是 吞吐量优先 什么是 响应时间优先 &#xff1f; CMS&#xff08;并发&#xff09;垃圾收集器 G1 垃圾收集器 垃圾收集器 垃圾收集器大概可以分为&#xff1a; 串行垃圾收集器并行垃圾收集器CMS&#xff08;并发&a…

解构软件开发中的破窗效应

目录 一、前言 二、解构破窗效应 三、如何解构&#xff1f; 一、前言 “一个房子如果窗户破了&#xff0c;没有人去修补&#xff0c;隔不久&#xff0c;其它的窗户也会莫名其妙地被人打破&#xff1b;一面墙&#xff0c;如果出现一些涂鸦没有被清洗掉&#xff0c;很快的&#x…

【Unity每日一记】资源加载相关你掌握多少?

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…