(2024)KAN: Kolmogorov–Arnold Networks:评论

KAN: Kolmogorov–Arnold Networks: A review

公和众与号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群)

目录

0. 摘要

1. MLP 也有可学习的激活函数

2. 标题的意义

3. KAN 是具有样条基激活函数的 MLP

4. 关于 KAN 打破维度灾难的说法是错误的

5. 参考文献


0. 摘要

为什么要评论这篇文章?2024 年 4 月 30 日,KAN [Liu et al., 2024] 出现在 ArXiV 上,到 5 月 7 日,我已经从多位学生那里听说了这篇论文,而这些学生平时并不会告诉我新论文。这一定很特别,我想。我决定看看。

如果我在专业上审查这篇论文,我会接受这篇论文,但需要做重大修改。这篇论文有足够的贡献,值得发表。但一些声明需要弱化,解释需要澄清,并且需要与基于样条(spline)的神经网络进行比较。

大纲:我对这篇论文提出了四个主要批评:

  1. 多层感知机(MLP)也有可学习的激活函数
  2. 论文的内容不符合其标题,Kolmogorov-Arnold networks(KANs)
  3. KANs是使用样条基函数作为激活函数的MLP
  4. KANs并没有打破维度灾难

页面:https://vikasdhiman.info/reviews/2024/05/08/review-KAN/  

(2024,KAN,MLP,可训练激活函数,样条函数,分层函数)Kolmogorov–Arnold 网络

1. MLP 也有可学习的激活函数

作者在摘要中声称: “虽然 MLP 在节点(“神经元”)上有固定的激活函数,但 KANs 在边(“权重”)上有可学习的激活函数。KANs 根本没有线性权重——每个权重参数都被一个参数化为样条的单变量函数所取代。”

这不是一个有用的描述,因为也可以将 MLP 解释为有 “可学习的激活函数”;这取决于你如何定义“激活函数”。考虑一个两层的 MLP,输入 x ∈ R^n,权重 W1, W2(暂时忽略偏置)和激活函数σ,

如果我定义 ϕ1(x) = σ(W_1·x) 并将 ϕ1(.) 称为激活函数,那么我在 MLP 中有一个可学习的激活函数。与图 0.1 相同,这是一种重新解释,而不是如所声称的那样重新设计 MLP。

2. 标题的意义

KANs 实际如何使用 Kolmogorov-Arnold Theorem(KAT)?该定理在 KANs 的开发中并没有实际作用。KANs 只是受到 KAT 的启发,而不是基于它。

那么 KAT 是什么?论文将其描述为,将任何光滑函数 f : [0, 1]^n → R 分解为有限基函数 ϕ^(2)_ q: R → R 和 ϕ_(q,p) : [0, 1] → R。

如果你打算使用 KAT,你需要理解 KAT 定理的中心论点,以及该定理与最接近的竞争对手通用逼近定理(Universal Approximation Theorem,UAT)有何不同。UAT 表明,任何函数都可以通过足够宽的两层神经网络来逼近。

我以求和的方式写了 MLP,而不是矩阵乘法,以便在 UAT 和 KAT 之间画出相似之处。UAT 和 KAT 之间有两个主要区别:

  1. UAT 处理具有常见激活函数的线性层(如 sigmoid [Cybenko, 1989]、ReLU、tanh),而 KAT 处理任意函数,可能是 “非平滑甚至分形的”。
  2. UAT 可能需要无限的隐藏单元(hidden units)进行精确逼近,而 KAT 只需要 2n+1 个隐藏单元。

我认为 KAT 的中心点在于只需要 2n + 1 个隐藏单元,否则它是一个比 UAT 弱的定理。KAN 论文是否一致使用了 2n + 1 个隐藏单元?没有。但他们通过说以下内容来证明论文的其余部分基于 KAT, “然而,我们对 KAT 在机器学习中的有用性更加乐观。首先,我们不需要坚持只有两层非线性和隐藏层中少量项(2n + 1)的原始公式(2.1):我们将网络推广到任意宽度和深度。”

好吧。但那我们不就回到了 UAT 了吗?

作者强调了 KAT 的一个方面,“从某种意义上说,他们表明唯一真正的多变量函数是加法,因为每个其他函数都可以使用单变量函数和求和来表示。” 这是一个很酷的解释,但这种解释并不能将 KAT 与已经在 MLP 中使用的 UAT 区分开来。

3. KAN 是具有样条基激活函数的 MLP

实际上,作者最终提出了一个 KAN 残差层,其每个标量函数写为,

什么是样条?【https://personal.math.vt.edu/embree/math5466/lecture10.pdf】对于本节的目的,你不需要了解样条。顺便说一句,一些样条在神经网络中使用的论文 [Bohra et al., 2020, Aziznejad et al., 2020] 没有在 KAN 论文中引用 。

现在,假设样条是特定类型基函数 B_i(x) 的线性组合 c_i·B_i(x) 的结果。为了将这个标量函数重新解释为 MLP,让我们重新写成如下,

其中,w 包含样条的可学习参数,一旦样条网格固定,b(x) 是确定的,尽管它可以变得可学习。让我们将其代入(2),

如果我们将 w 视为线性权重,将基函数视为激活函数,这与 MLP 非常接近,有以下几个区别:

  • 激活函数 b() 应用在输入侧,这通常不是 MLP 的一部分。然而,将输入转换为一组特征向量作为预处理步骤,而不是直接提供原始输入给 MLP,是很常见的。
  • 不像(3)中 w^(1)_(p,q) 是标量,(10) 中的 w^(1)_(p,q) 是向量。这不是问题,因为它仍然是通过基函数 b(x) 处理后的输入值的线性组合。为了明确这一点,我们将(10)写成矩阵向量乘法,后跟激活函数。

为了将(10)写成矩阵向量乘积,只考虑第一层项,

你可以重复应用这种解释,

其中,B(x) 与其他激活函数不同。它不是从一个标量产生一个标量,而是为输入中的每个标量值产生 G 个不同的值。

4. 关于 KAN 打破维度灾难的说法是错误的

作者声称,“KAN 具有有限网格大小,可以很好地逼近函数,其残差率与维度无关,因此打破了维度灾难!”

这是一个巨大的声明,需要大量的证据。正如前一节所述,如果所有 KAN 都可以写成 MLP,那么要么 MLP 和 KAN 都打破了维度灾难,要么都没有。

我的第一个反对意见是对 “维度灾难” 的解释。通常,机器学习中的维度灾难是通过训练一个函数达到所需误差所需的数据量来衡量的。

我不理解定理 2.1 的证明,尤其是第一步。不清楚这一结果是如何从 [de Boor, 2001] 中的哪个定理得出的。如果能提供页码或章节那就更好了。

这也违反直觉,因为假定所有 n 个输入维度都有相同的网格大小 G。如果 x 的每个维度被划分为不同的网格大小,界限会是什么样子。

5. 参考文献

[Aziznejad et al., 2020] Aziznejad, S., Gupta, H., Campos, J., and Unser, M. (2020). Deep neural networks with trainable activations and controlled lipschitz constant. IEEE Transactions on Signal Processing, 68:4688–4699.

[Bohra et al., 2020] Bohra, P., Campos, J., Gupta, H., Aziznejad, S., and Unser, M. (2020). Learning activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing, 1:295–309.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314.

[de Boor, 2001] de Boor, C. (2001). A Practical Guide to Splines. Applied Mathematical Sciences. Springer New York.

[Liu et al., 2024] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljaˇci´c, M., Hou, T. Y., and Tegmark, M. (2024). Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775328.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

昇思25天学习打卡营第17天(+1)|Diffusion扩散模型

1. 学习内容复盘 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请确…

安乃达:看不懂的募资

不好玩啊,高标接连被S,市场激进资金找到了新股作为抱团方向。 首日大涨超100%,两日涨幅133%,今天果不其然被电风扇刮走了,今天我们聊聊新加入A股大本营的公司——安乃达。 首先,安乃达是国内直驱轮毂电机头…

vulnhub--IMF

环境 攻击机:192.168.96.4 靶机:ip未知 主机探测 确定靶机ip为32的主机 端口扫描 访问80端口 外围打点 在contact.php页面源码中找到了flag1 之后没啥突破 但查看网络后发现contact.php页面请求的三个js文件的文件名很有特点,猜测是base64编码…

数据结构——队列练习题

在C语言中,.和->运算符用于访问结构体的成员变量。它们之间的区别在于:.运算符用于访问结构体变量的成员。->运算符用于访问结构体指针变量的成员 1a(rear指向队尾元素后一位,判空判满时牺牲一个存储单元) 首先…

react 自定义 年-月-日 组件,单独选择年、月、日,并且产生联动

自定义 年-月-日 组件 code import { useState } from react function Year_Month_Date() {const [yearList, setYearList] useState([])const [monthList, setMonthList] useState([])const [dateList, setDateList] useState([])const [currentYear, setCurrentYear] u…

【React】上传文章封面基础实现

<Form.Item label"封面"><Form.Item name"type"><Radio.Group onChange{onTypeChange}><Radio value{1}>单图</Radio><Radio value{3}>三图</Radio><Radio value{0}>无图</Radio></Radio.Group&…

交叉测试的优点和缺点!

交叉测试在软件测试中具有重要的地位和作用。通过交叉测试&#xff0c;可以提高软件质量、提升用户体验、增加测试覆盖率、提高测试效率以及满足市场需求和竞争优势。因此&#xff0c;在软件开发和测试过程中&#xff0c;应充分重视交叉测试的实施和应用。 以下是对其优缺点的…

matplotlib下载安装

matplotlib下载安装过程同之前写的pygame很类似。 Pygame下载安装 python官网 1.搜索matplotlib 直接点进去 查看历史版本&#xff0c;因为新版本可能出现与python不匹配问题。 我选择3.6.3版本&#xff0c;因为我安装的python是3.8&#xff0c;可以匹配版本。同时window操…

泰迪智能科技企业项目试岗实训——数据分析类型

当今社会&#xff0c;就业技能的瞩目度正与日俱增。在竞争激烈的就业市场中&#xff0c;重视技能的培养和提升&#xff0c;通过学习与实践&#xff0c;增强自己的竞争力&#xff0c;为未来的职业发展打下坚实的基础&#xff0c;不仅有助于解决各类工作技能问题&#xff0c;更能…

使用Mybatis批量插入大量数据的实践

前言 在项目开发过程中&#xff0c;我们经常会有批量插入的需求&#xff0c;例如&#xff1a;定时统计任务 但是受限于MySQL中 max_allowed_packet 参数限制&#xff0c;5.7版本默认值为4M&#xff0c;这显然不太符合我们的需求&#xff0c;当然我们也可以通过修改此值来适应…

STM32和DHT11使用显示温湿度度(代码理解)+单总线协议

基于STM32CT&#xff0c;利用DHT11采集温湿度数据&#xff0c;在OLED上显示。一定要阅读DHT11数据手册。 1、 DHT11温湿度传感器 引脚说明 1、VDD 供电3.3&#xff5e;5.5V DC 2、DATA 串行数据&#xff0c;单总线 3、NC 空脚 4、GND 接地&#xff0c;电源负极 硬件电路 微…

【网络安全学习】漏洞利用:BurpSuite的使用-03-枚举攻击案例

如何使用BurpSuite进行枚举攻击 1.靶场选择 BurpSuite官方也是有渗透的教学与靶场的&#xff0c;这次就使用BurpSuite的靶场进行练习。 靶场地址&#xff1a;https://portswigger.net/web-security 登录后如下图所示&#xff0c;选择**【VIEW ALL PATHS】**&#xff1a; 找…

【fastadmin开发实战】经营数据自动识别录入

项目场景描述&#xff1a;每日录入各个门店的员工经营数据&#xff0c;直接从微信复制报数、系统识别录入。 解决方案&#xff1a;各个门店按照固定的汇报模板进行汇报&#xff08;如福田店有员工1、2、3、4、5号员工&#xff0c;每个员工按模板报数&#xff09; 例如&#xf…

快手矩阵系统源码:构建高效短视频生态的引擎

在短视频内容创作和管理领域&#xff0c;快手矩阵系统源码提供了一套全面的解决方案&#xff0c;帮助用户和企业高效地构建和管理自己的短视频平台。本文将深入探讨快手矩阵系统源码的核心功能&#xff0c;以及它如何助力用户在短视频领域取得成功。 快手矩阵系统源码概述 快…

2-3 图像分类数据集

MNIST数据集是图像分类任务中广泛使用的数据集之一&#xff0c;但作为基准数据集过于简单&#xff0c;我们将使用类似但更复杂的Fashion-MNIST数据集。 %matplotlib inline import torch import torchvision # pytorch模型关于计算机视觉模型实现的一个库 from torch.utils i…

windows启动Docker闪退Docker desktop stopped

Windows启动Docker闪退-Docker desktop stopped 电脑上很早就安装有Docker了&#xff0c;但是有一段时间都没有启动了&#xff0c;今天想启动启动不起来了&#xff0c;打开没几秒就闪退&#xff0c;记录一下解决方案。仅供参考 首先&#xff0c;参照其他解决方案&#xff0c;本…

对SRS媒体服务器进行漏洞扫描时,SRS的API模块会出现漏洞,如何修补这些漏洞的简单方法

目录 一、引言 1、srs介绍 2、媒体流介绍 3、应用场景 二、SRS的http_api介绍、及漏洞 1、概述 2、http_api模块的作用 &#xff08;1&#xff09;提供HTTP API服务 &#xff08;2&#xff09;管理和监控SRS服务器 &#xff08;3&#xff09;自定义开发 三、漏洞扫描…

昆虫学(书籍学习资料)

包括昆虫分类&#xff08;上下册&#xff09;、昆虫生态大图鉴等书籍资料。

搜索+动态规划

刷题刷题刷题刷题 ​​​​​​​​​​​​​​Forgery - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路&#xff1a; 需要两个数组&#xff0c;一个数组全部初始化为".",另一个数组输入数据&#xff0c;每碰到一个“.”就进行染色操作&#xff0c;将其周围的…

Django学习第五天

启动项目命令 python manage.py runserver 图像验证码生成随机字母或者数字 import random from PIL import Image, ImageDraw, ImageFont, ImageFilterdef check_code(width120, height40, char_length5, font_fileZixunHappyBold.ttf, font_size28):code []img Image.new…