谈大语言模型动态思维流程编排

        尽管大语言模型已经呈现出了强大的威力,但是如何让它完美地完成一个大的问题,仍然是一个巨大的挑战。

    需要精心地给予大模型许多的提示(Prompt)。对于一个复杂的应用场景,编写一套完整的,准确无误的提示,并不容易。另一方面,尽管大模型已经具备了一些拆解问题,一步步解接的能力。但是就目前而言,这种分析,推理能力还是不能能准确地做出推理

  另一方面,对于大多数特定的问题而言,人类本身具有了成熟,有效的分析问题,解决问题的能力。我们出生起,就不断地学习如何一步步地拆解问题,通过步步地解决小问题,最终解决一个复杂的问题。

  许多的研究者提出了各种提示大模型拆解问题的方法。例如  计划和解题(Plan-and-Solve Prompting),反思 ReAct 等等。但是不同的问题,有不同的解决思路。我们从小在学校里解决应用题时,老师总是教我们解题思路。对于各种问题,大模型需要能够动态地做出解题方法。使用静态的提示来实现动态地计划是十分复杂,。在笔者看来,使用计算机语言来动态规划大模型解决问题的思路更加有效。

从实例谈起

     我们计划编写一个增强个人记忆力的大模型应用,该项目叫做 回忆(Recall)。在这个应用中,使用者要不断地告诉大模型一些关于个人的信息。例如:

  •       个人简历:包括姓名,性别,出身日期,出生地,家庭成员,教育和工作简历等等。
  •       个人爱好:自己的爱好,包括饮食,业余爱好,购物的品牌等等
  •      个人活动:比如一些主要的活动,比如逛街,朋友聚会,就医等等活动。
  •       备忘录:一些需要备忘的事情,例如 我的衣服放在哪里了。每天吃什么药等等。

      这个项目貌似比较简单,与windows AI PC 中的Recall ,开源项目Rewind 有相似之处。按照网络上的各种大模型架构的方法,主要使用如下方式

  •      使用大模型的Memory 功能实现对话的记忆
  •     将用户的个人信息,爱好,个人活动写入Vector 数据库中,使用RAG 技术在会话过程中读取相关信息
  •     构建ReAct Agent 进行 Action -Throught-Observation 的过程
  •    调用合适的工具(Agent Tools)

 vector 数据库 可以使用内存Memory  也可以使用永久VectorDB ,例如Croma VectorDB。

大模型我们测试了下列几种:

  1. openai
  2. 本地 llama-3
  3. 文心一言
  4. kimi
  5. 零一万物

但是结果并不令人满意,主要表现在如下几个方面

  •  并非所有的大模型都支持 Function Call,Agent,Memory ,RAG等功能的API。 
  • Vector 数据库要使用Embedding 功能实现text -splite .耗费的时间很长。
  • Momory 功能是将输入和回答都一股脑地存储了起来。会造成某些噪声混乱。
  • 简单的提问查询Vector数据库时,无法精切地匹配数据库的内容。
  • ReAct 的效果并不理想,有时后会乱想,反复地循环。明明得到了结果,却无法停止对话。
  • 延时长,耗费的token 多。

 实验下来,openai 效果最好,其它国内的大模型或多多少地出现问题。

观点

经过一段时间的实验之后,我们对大模型应用进行了新的思考,形成了下面几个观点:

  • 让大模型分层思考

         将复杂的问题分解为若干的小问题,通过解决小问题,最后解决大问题。这种方式具有如下的优点:

                -大模型回答简单的问题,有利于保证其确定性

                -使提示工程变得简单

                    提示也被分解成小提示,小问题的提示更具有针对性

                -不依赖具体的大模型API

                   简单地使用chat 就可以。 

                 -有利于采纳本地小模型与远程大模型相结合  ,降低使用大模型的成本,提高响应时间

  •    使用程序设计的方法动态地编排大模型的思维过程

          对于特定的一类问题,可以实现根据人类的经验,制定一套完整的思维过程。这样做的优点:

                -融入了人类的思维方式,更具有针对性。推理的速度更快

                -有利于对大模型的回答做确定性判断

                -有利于对大模型的回答做确定性验证

动态思维的流程

我们继续使用上面的实例来讨论动态思维流程。

  1. 判断语句是陈述句,还是询问句
  2. 如果是陈述句,内容要存储到数据库中,如果是提问句,那么要从数据库中获取相关的信息
  3. 为了对信息做分类,要判断陈述或者提问的内容的分类。
  4. 如果是其它类型的提问,就直接有大模型回答

思维流程的编排方法 

可以用程序或者图形方式来编排大模型的思维流程,在我们的实验中,采取了工业控制领域中功能块的编排方法。

      基于我们的经验,决定借用IEC61499 事件功能块的概念和方法,这样做的另一个意图是实现语言功能块和IEC61499 功能块的融合。

IEC61499 的基本概念包括:

  • 基本功能块
  • 复合功能块
  • 功能块网络

       IEC61499 功能块由事件输入,事件输出,数据输入和数据输出。事件用来控制程序执行 的流程,数据用来表示数据的流动。

 

大语言功能块内部由大语言模型来回答一个特定的问题。 其内部结构如下:

大模型思维流程

       大语言思维流程由大语言功能块网络组成,通过功能块网络运行时解释执行。功能块共享环境信息,环境信息包含了基本信息(对话者的姓名, 今天几号,星期几等等)和功能块通过数据库中提取的信息。一个功能块系统的结构如下

实验平台

   为了实验langFunctionblock 的想法,我们简单地搭建列一个实验平台:

  • 基于Nodejs/Javascript
  • 基于langchain库
  • 一个Javascript 实现的功能块运行时
  • 一组基于大模型的功能块
  • 不依赖大模型的API
App架构

实例的功能块网络 

功能块

InputMessage

输入用户提问的功能块,当用户输入消息时。该功能块产生:

  • Output 事件
  • OutMessage 数据

应用程序通过 WriteData 和Execution  调用该功能块。

设置InputMessage和OutMessage功能块的主要目的是使功能块具有一个统一的入口和出口。

Check

主要判断输入语句是询问句还是陈述句。

Memory

该功能块判断陈数句内容的类型:个人信息,事件,备忘录,然后将语句的类型,语句和时间标签存储到MongoDB 数据库中。

Recall

该功能块判断陈数句内容的类型:个人信息,事件,备忘录,然后从数据库中读出相应类型的数据,添加在环境信息中。

Basic

  这是一个基本大模型的功能块,将InMessage 结合环境信息一起构成Prompt 询问大模型,回答输出到OutMessage

OutMessage

 该模块将信息返回给对话者。

程序的实例

Check功能块

class Check {

  constructor(Parameters) {

    this.Name = Parameters.Name;
    this.Type = "CheckType";
    this.model = Parameters.Model
    this.ModelType = Parameters.ModelType
  }
  async Executive(runtime, EventType) {
    if (EventType == "Invoke") {
      console.log("Invoke:" + this.ModelType)
      console.log(this.InMessage)
      const Prefix = `请将下列语句分为下列几类:询问,陈述,请求。`
      const Suffix = `。请以JSON形式输出语句的类型 :JSON的格式为:
                {
                    class:"语句的类型"
                   }
                   如果无法判断语句的类型,直接输出 {class:"其它"}`
      const Prompt = Prefix + this.InMessage + Suffix
      const completion = await this.model.chat.completions.create({
        messages: [
          {
            "role": "user",
            "content": Prompt,
          }],
        model: this.ModelType,
      });

      const Content = await completion.choices[0].message.content
      const JSonContent = JSON.parse(Content.replace("```json\n", "").replace("```", ""))
      console.log(JSonContent.class)
      if (JSonContent.class == "询问") {
        this.OutMessage = this.InMessage
        await runtime.WriteOutputData({ FBName: this.Name, DataName: "OutMessage", Value: this.OutMessage })
        await runtime.EventNotify({ FBName: this.Name, EventName: "Ask" })

      }
      else if (JSonContent.class == "陈述") {
        this.OutMessage = this.InMessage
        await runtime.WriteOutputData({ FBName: this.Name, DataName: "OutMessage", Value: this.OutMessage })
        await runtime.EventNotify({ FBName: this.Name, EventName: "Statment" })

      } else if (JSonContent.class == "请求") {

        this.OutMessage = this.InMessage;
        await runtime.WriteOutputData({ FBName: this.Name, DataName: "OutMessage", Value: this.OutMessage })
        await runtime.EventNotify({ FBName: this.Name, EventName: "Request" })

      }
      else {

        this.OutMessage = this.InMessage
        await runtime.WriteOutputData({ FBName: this.Name, DataName: "OutMessage", Value: this.OutMessage })
        await runtime.EventNotify({ FBName: this.Name, EventName: "Ask" })
      }

    }
  }
  async WriteData(Name, Value) {
   
    if (Name == "InMessage") {
      this.InMessage = Value;
   
    }
  }
  async ReadData(Name) {
    if (Name == "OutMessage")
      return this.OutputMessage;
  }
}

主程序

import express from 'express';
import path from 'path'
import url from 'url'
//import fs from 'fs'
import OpenAI from 'openai';
import {RunTime} from "./RunTime/RunTime.mjs"
const API_BASE = "https://api.lingyiwanwu.com/v1"
const API_KEY = "xxxxxxxxxxxxxxxxxxx"
const openai = new OpenAI({
    apiKey: API_KEY,
    baseURL:API_BASE,
    model: "yi-large",
  temperature: 0
  });
  
  const router = express.Router();
  const app = express();
  const __filename = url.fileURLToPath(import.meta.url);
  const __dirname = path.dirname(__filename);
// var upload = multer({ dest: './documents' })
  app.use(express.static(path.join(__dirname, 'public')));
  app.use(express.json())
  router.get('/index', function (req, res) {
      res.sendFile(path.join(__dirname + '/views/indexB.html'));
  });
  router.post('/Request', async function (req, res) {
    Request = req.body;
    console.log(Request)
    const Method = Request.Method;
    const Message = Request.Message;
    console.log(Method);
    console.log(Message);
   
    const result = await RunFBNetwork(Message)
    
    res.send(JSON.stringify({
        Method: "SendMessage",
        Message: result
    }))
})
app.use('/', router);
  //RunTime Initialize 
console.log("llm FunctionBlock Runtime Ver 1.0")
const runtime=new RunTime();
runtime.InitializeFunctionBlickList();
runtime.LoadFBNetwork(openai); 
app.listen(process.env.port || 3000);
console.log('Running at Port 3000');

 async function RunFBNetwork(InputMessage){
  console.log("llm FunctionBlock Runtime Ver 1.0")
  //RunTime Initialize 
  runtime.InitializeMongoDB()
  runtime.InitializeEnvironment()
 await runtime.WriteInputData({FBName:"InMessage",DataName:"InMessage",Value:InputMessage})
 await runtime.Executive({FBName:"InMessage",EventType:"Request"})
 //Running....
 await runtime.run()
 const Output=await runtime.ReadFBData({
   FBName:"OutMessage",
   DataName:"OutMessage"})
   console.log(Output)
   return (Output)
}

结果

        经过我们的初步测试,结果要比采用大模型的memory,RAG,ReAct Agent等方式要好。主要表现为准确率高,速度快。

  •   将复杂的问题拆解成为小问题更有效
  • 对于特定的应用场景,能够利用人类分析问题的经验,动态地编写思维流程要比简单的将复杂任务交给大模型更好。效果远远超过ReAct Agent
  • 功能块及其功能块网络适合大模型思维流程的编排。

 感兴趣的读者可以进一步共同探讨。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/775015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【技术支持】console控制台输出美化(腾讯文档)

function style(color, size 12){return display:inline-block;background-color:${color};color:#fff;padding:2px 4px;font-size:${size}px; } const dataVersion 3.0.0 const codeVersion 3.0.28657969 const branchVersion release-20240617-f98487dc //注意此处%c后面…

Amesim应用篇-信号传递

前言 在Amesim中常见的信号传递是通过信号线连接,针对简单的模型通过信号线连接还可以是信号线清晰规整,方便查看。如果模型较复杂,传递信号的元件较多时,此时再继续使用信号线进行信号传递,可能会使草图界面看起来杂…

vxe-table合并行数据;element-plus的el-table动态合并行

文章目录 一、vxe-table合并行数据1.代码 二、使用element-plus的el-table动态合并行2.代码 注意&#xff1a;const fields 是要合并的字段 一、vxe-table合并行数据 1.代码 <vxe-tableborderresizableheight"500":scroll-y"{enabled: false}":span-m…

ASUS/华硕枪神4 G532L G732L系列 原厂win10系统 工厂文件 带F12 ASUS Recovery恢复

华硕工厂文件恢复系统 &#xff0c;安装结束后带隐藏分区&#xff0c;一键恢复&#xff0c;以及机器所有驱动软件。 系统版本&#xff1a;Windows10 原厂系统下载网址&#xff1a;http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意&#xff1a;仅支持以上型号专用…

【HALCON】如何实现hw窗口自适应相机拍照成像的大小

前言 在开发一个喷码检测软件的时候碰到相机成像和hw窗体的大小不一致&#xff0c;hw太小显示不完全成像的图片&#xff0c;这使得成像不均匀&#xff0c;现场辨别起来比较不直观&#xff0c;因此需要对其进行一个调整。 解决 省略掉读取图片的环节&#xff0c;我们只需要将…

BSI 第七届万物互联智慧高峰论坛:主题:拥抱AI时代,标准赋能组织实现可持续发展

BSI 第七届万物互联智慧高峰论坛&#xff1a;主题&#xff1a;拥抱AI时代&#xff0c;标准赋能组织实现可持续发展 主要收到 BSI 温女士的邀请参加的本次论坛。还是学到的很多 。 在科技日新月异的时代背景下&#xff0c;BSI 第七届万物互联智慧高峰论坛于[时间&#xff1a;6…

mac安装docker

1、首先打开docker官网 https://docs.docker.com/engine/install/ 2、下载好后安装到app应用 3、安装好环境变量 #docker echo export PATH"/usr/local/Cellar/docker/20.10.11/bin:$PATH" >> .bash_profile

百度云智能媒体内容分析一体机(MCA)建设

导读 &#xff1a;本文主要介绍了百度智能云MCA产品的概念和应用。 媒体信息海量且复杂&#xff0c;采用人工的方式对视频进行分析处理&#xff0c;面临着效率低、成本高的困难。于是&#xff0c;MCA应运而生。它基于百度自研的视觉AI、ASR、NLP技术&#xff0c;为用户提供音视…

不错的用户需求访谈方法

不错的用户需求访谈方法&#xff0c;可以用如下的矩阵&#xff0c;用来引导用户访谈&#xff1a;

vue实现搜索文章关键字,滑到指定位置并且高亮

1、输入搜索条件&#xff0c;点击搜索按钮 2、滑到定位到指定的搜索条件。 <template><div><div class"search_form"><el-inputv-model"searchVal"placeholder"请输入关键字查询"clearablesize"small"style&quo…

Go源码--channel源码解读

简介 channel顾名思义就是channel的意思&#xff0c;主要用来在协程之间传递数据&#xff0c;所以是并发安全的。其实现原理&#xff0c;其实就是一个共享内存再加上锁&#xff0c;底层阻塞机制使用的是GMP模型。可见 GMP模型就是那个道&#xff0c;道生一,一生二,二生三,三生…

2024.8月28号杭州电商博览会,在杭州国博举办

2024杭州电商新渠道博览会暨集脉电商节 时间&#xff1a;2024年08月28-30日 地点&#xff1a;杭州国际博览中心&#xff08;G20&#xff09; 主办单位&#xff1a;浙江集脉展览有限公司、杭州华维展览有限公司 承办单位&#xff1a;浙江集脉展览有限公司 报名参展&#xf…

Navicat和MySQL的安装

1、下载 Navicat Navicat 官网&#xff1a;www.navicat.com.cn/ 在产品中可以看到很多的产品&#xff0c;点击免费试用 Navicat Premium 即可&#xff0c;是一套多连数据库开发工具&#xff0c;其他的只能连接单一类型数据库 点击试用 选择系统直接下载 二、安装 Navicat 安…

03:EDA的进阶使用

使用EDA设计一个38译码器电路和245放大电路 1、38译码器1.1、查看74HC138芯片数据1.2、电路设计 2、245放大电路2.1、查看数据手册2.2、设计电路 3、绘制PCB3.1、导入3.2、放置3.3、飞线3.4、特殊方式连接GND3.5、泪滴3.6、配置丝印和划分区域3.7、添加typc接口供电 1、38译码器…

‘艾’公益——微笑行动「广安站」为艾祝福,让笑起舞

艾多美“微笑行动”广安站拉开帷幕 此次爱心帮助7名唇腭裂患儿 重新绽放微笑 艾多美“微笑行动”广安站拉开帷幕 此次爱心帮助7名唇腭裂患儿 重新绽放微笑 不让笑容留有缺憾 每个孩子都有微笑的权利 艾多美向唇腭裂儿童伸出援手 绽放笑容&#xff0c;拥抱全新的未来 2…

通信安全员考试精选练习题库,2024年备考必刷题!

16.设计单位必须在设计文件中&#xff08;&#xff09;计列安全生产费。 A.全额 B.部分 C.按建设单位要求 D.按工程建设需要 答案&#xff1a;A 17.日最高气温达到&#xff08;&#xff09;℃以上&#xff0c;应当停止当日室外露天作业。 A.38 B.36 C.35 D.40 答案&…

2024年智慧教育与社会科学国际会议 (ICSSS 2024)

2024年智慧教育与社会科学国际会议 (ICSSS 2024) 2024 International Conference on Smart Education and Social Sciences 【重要信息】 大会地点&#xff1a;北京 大会官网&#xff1a;http://www.icicsss.com 投稿邮箱&#xff1a;icicssssub-conf.com 【注意&#xff1a;稿…

达梦数据库的系统视图v$auditrecords

达梦数据库的系统视图v$auditrecords 在达梦数据库&#xff08;DM Database&#xff09;中&#xff0c;V$AUDITRECORDS 是专门用来存储和查询数据库审计记录的重要系统视图。这个视图提供了对所有审计事件的访问权限&#xff0c;包括操作类型、操作用户、时间戳、目标对象等信…

2024年07月03日 Redis部署方式和持久化

Redis持久化方式&#xff1a;RDB和AOF&#xff0c;和混合式 RDB&#xff1a;周期备份模式&#xff0c;每隔一段时间备份一份快照文件&#xff0c;从主线程Fork一个备份线程出来备份&#xff0c;缺点是会造成数据的丢失。 AOF&#xff1a;日志模式&#xff0c;每条命令都以操作…

【docker nvidia/cuda】ubuntu20.04安装docker踩坑记录

docker nvidia 1.遇到这个错误&#xff0c;直接上魔法(科学上网) OpenSSL SSL_connect: Could not connect to nvidia.github.io:443 这个error是运行 NVIDIA官方docker安装教程 第一个 curl 命令是遇到的 2. apt-get 更新 sudo apt update遇到 error https://download.do…