【数据分析入门】Numpy进阶

目录

  • 一、数据重塑
    • 1.1 透视
    • 1.2 透视表
    • 1.3 堆栈/反堆栈
    • 1.3 融合
  • 二、迭代
  • 三、高级索引
    • 3.1 基础选择
    • 3.2 通过isin选择
    • 3.3 通过Where选择
    • 3.4 通过Query选择
    • 3.5 设置/取消索引
    • 3.6 重置索引
      • 3.6.1 前向填充
      • 3.6.2 后向填充
    • 3.7 多重索引
  • 四、重复数据
  • 五、数据分组
    • 5.1 聚合
    • 5.2 转换
  • 六、缺失值
  • 七、合并数据
    • 7.1 合并-Merge
    • 7.2 连接-Join
    • 7.3 拼接-Concatenate
      • 7.3.1 纵向拼接
      • 7.3.2 横向/纵向拼接
  • 八、日期
  • 九、可视化


pandas 是一个功能强大的 Python 数据分析库,为数据处理和分析提供了高效且灵活的工具。它是在 NumPy 的基础上构建的,为处理结构化数据(如表格数据)时间序列数据提供了丰富的数据结构和数据操作方法

pandas 提供了两种主要的数据结构:SeriesDataFrameSeries一维标记型数组,类似于带标签的列表,可以存储不同类型的数据DataFrame二维的表格型数据结构,类似于关系型数据库中的表格,它由多个 Series 组成,每个 Series 都有一个共同的索引。这使得 pandas 在处理和分析数据时非常方便和高效。

使用 pandas,我们就可以轻松地进行数据导入数据清洗数据转换数据筛选数据分析等操作。它提供了丰富的函数和方法,如索引切片聚合合并排序统计绘图等,使得数据分析变得简单而直观。

一、数据重塑

1.1 透视

  假设我们有一个 DataFrame df2,其中包含了 'Date’、‘Type’ 和 ‘Value’ 这三列数据。想要将 ‘Type’ 列的唯一值作为新 DataFrame 的列,‘Date’ 列作为新 DataFrame 的索引,并将 ‘Value’ 列中对应的值填充到新 DataFrame 的相应位置上
  即 将行变为列 ,我们可以这么实现代码:

>>> df3= df2.pivot(index='Date',columns='Type', values='Value')

在这里插入图片描述
  下面来对pivot() 函数的参数做一下说明:
  index:指定作为新 DataFrame 索引的列名,这里是 ‘Date’ 列。
  columns:指定作为新 DataFrame 列的列名,这里是 ‘Type’ 列的唯一值。
  values:指定填充到新 DataFrame 中的值的列名,这里是 ‘Value’ 列。

1.2 透视表

  使用了 pd.pivot_table() 函数创建一个透视表。pivot_table() 函数可以帮助我们在 pandas 中进行数据透视操作,并实现将一个 DataFrame 中的值按照指定的行和列进行聚合
  即 将行变为列,我们可以这么实现:

>>> df4 = pd.pivot_table(df2,values='Value',index='Date',columns='Type'])

  下面来解释一下里面出现的各参数的含义:
  其中,‘df2’ 是原始的 DataFrame,‘Value’ 是要聚合的数值列名,‘Date’ 是新 DataFrame 的索引列名,而 ‘Type’ 是新 DataFrame 的列名
  pd.pivot_table() 函数会将 df2 中的数据按照 ‘Date’ 和 ‘Type’ 进行分组,并计算每个组中 ‘Value’ 列的聚合值(默认为均值)。然后,将聚合后的结果填充到新的 DataFrame df4 中,其中 每一行表示一个日期,每一列表示一个类型
  如果在透视表操作中存在重复的索引/列组合,pivot_table() 函数将会使用默认的聚合方法(均值)进行合并。如果我们想要使用其他聚合函数,可以通过传递 aggfunc 参数来进行设置,例如 aggfunc=‘sum’ 表示求和。

1.3 堆栈/反堆栈

  stack() 和 unstack() 是 pandas 中用于处理层次化索引的函数,可以在 多级索引的 DataFrame 中透视行和列标签

>>> stacked = df5.stack() 
# 透视列标签
# 使用 stack() 函数将列标签透视,即将列标签转换为行索引,并将相应的数据堆叠起来。这样可以创建一个具有多级索引的 Series
>>> stacked.unstack()
# 透视索引标签
# 上述代码则使用 unstack() 函数将索引标签透视,即将行索引转换为列标签,并将相应的数据重新排列。这样可以还原出原始的 DataFrame 结构

在这里插入图片描述

1.3 融合

  我们需要 将指定的列转换为一个观察值列时,可以使用 pd.melt() 函数来将一个 DataFrame 进行融合操作(melt)
  将列转为行:

>>> pd.melt(df2,id_vars=["Date"],value_vars=["Type","Value"],value_name="Observations")

在这里插入图片描述
  其中,df2 是原始的 DataFrame,id_vars=[“Date”] 表示保持 ‘Date’ 列不融合,作为 标识变量也就是保持不动的列)。value_vars=[“Type”, “Value”] 指定要融合的列为 ‘Type’ 和 ‘Value’。value_name=“Observations” 表示新生成的观察值列的名称为 ‘Observations’。
  pd.melt() 函数将指定的列进行融合操作,并创建一个新的 DataFrame。融合后的 DataFrame 中会包含四列,分别是融合后的标识变量(‘Date’)融合的列名(‘variable’)融合的值(‘Observations’)以及原始 DataFrame 中对应的观察值


二、迭代

  df.iteritems()是一个 DataFrame 的迭代器方法,用于按列迭代 DataFrame。它返回一个生成器,每次迭代生成一个包含列索引和对应列的序列的键值对
  df.iterrows() 也是一个 DataFrame 的迭代器方法,用于按行迭代 DataFrame。它返回一个生成器,每次迭代生成一个包含行索引和对应行的序列的键值对

>>> df.iteritems() 
# (列索引,序列)键值对
>>> df.iterrows()
# (行索引,序列)键值对

  下面是一些基本操作:

for column_index, column in df.iteritems():
    # 对每一列进行操作
    print(column_index)  # 打印列索引
    print(column)  # 打印列的序列

for index, row in df.iterrows():
    # 对每一行进行操作
    print(index)  # 打印行索引
    print(row)  # 打印行的序列

三、高级索引

3.1 基础选择

  DataFrame 中基于条件选择列的操作如下,都是一些基本的操作:

>>> df3.loc[:,(df3>1).any()] 
# 选择任一值大于1的列
>>> df3.loc[:,(df3>1).all()] 
# 选择所有值大于1的列
>>> df3.loc[:,df3.isnull().any()] 
# 选择含 NaN值的列
>>> df3.loc[:,df3.notnull().all()] 
# 选择含 NaN值的列

3.2 通过isin选择

  而在很多情况下,我们所需要做的不是仅仅通过基于条件选择列这么简单的操作,所以还有必要学习 DataFrame 的进一步选择和筛选操作

>>> df[(df.Country.isin(df2.Type))] 
# 选择为某一类型的数值 
>>> df3.filter(items=”a”,”b”]) 
# 选择特定值
>>> df.select(lambda x: not x%5) 
# 选择指定元素

3.3 通过Where选择

  where()是Pandas Series对象中的一个方法,也可以用于选择满足条件的子集

>>> s.where(s > 0)
# 选择子集

3.4 通过Query选择

>>> df6.query('second > first')
# 查询DataFrame

  df6.query(‘second > first’)DataFrame 对象中的一个查询操作,查询 DataFrame df6 中满足条件 “second > first” 的行。其中,“second” 和 “first” 是列名,表示要比较的两个列。只有满足条件的行会被选中并返回为一个新的 DataFrame


3.5 设置/取消索引

>>> df.set_index('Country')
# 设置索引
>>> df4 = df.reset_index()
# 取消索引
>>> df = df.rename(index=str,columns={"Country":"cntry","Capital":"cptl","Population":"ppltn"})
# 重命名DataFrame列名

3.6 重置索引

  有时候我们需要重新索引 Series
  将 Series s 的索引重新排列为 [‘a’, ‘c’, ‘d’, ‘e’, ‘b’],并返回一个新的 Series。如果 原来的索引中不存在某个新索引值对应的值将被设置为 NaN(缺失值)

>>> s2 = s.reindex(['a','c','d','e','b'])

3.6.1 前向填充

>>> df.reindex(range(4), method='ffill')
   Country Capital  Population
 0 Belgium Brussels 11190846
 1 India  New Delhi 1303171035
 2 Brazil  Brasília 207847528
 3 Brazil  Brasília 207847528

3.6.2 后向填充

>>> s3 = s.reindex(range(5), method='bfill')
 0 3 
 1 3
 2 3
 3 3
 4 3

3.7 多重索引

>>> arrays = [np.array([1,2,3]),
np.array([5,4,3])]
>>> df5 = pd.DataFrame(np.random.rand(3, 2), index=arrays)
>>> tuples = list(zip(*arrays))
>>> index = pd.MultiIndex.from_tuples(tuples, 
 names=['first', 'second'])
>>> df6 = pd.DataFrame(np.random.rand(3, 2), index=index)
>>> df2.set_index(["Date", "Type"]) 

四、重复数据

>>> s3.unique() 
# 返回唯一值
>>> df2.duplicated('Type')
# 查找重复值
>>> df2.drop_duplicates('Type', keep='last') 
# 去除重复值
>>> df.index.duplicated()
# 查找重复索引

五、数据分组

5.1 聚合

>>> df2.groupby(by=['Date','Type']).mean()
>>> df4.groupby(level=0).sum()
>>> df4.groupby(level=0).agg({'a':lambda x:sum(x)/len(x),
'b': np.sum})

5.2 转换

>>> customSum = lambda x: (x+x%2)
>>> df4.groupby(level=0).transform(customSum)

六、缺失值

>>> df.dropna()
# 去除缺失值NaN
>>> df3.fillna(df3.mean())
# 用预设值填充缺失值NaN
>>> df2.replace("a", "f") 
# 用一个值替换另一个值

七、合并数据

7.1 合并-Merge

在这里插入图片描述

>>> pd.merge(data1, data2, how='left', on='X1')

  将 data1data2 两个 DataFrame 按照它们的 ‘X1’ 列进行左连接,并返回一个新的 DataFrame左连接保留 data1 的所有行,并将 data2 中符合条件的行合并到 data1 中。如果 data2 中没有与 data1 匹配的行,则对应的列值将被设置为 NaN(缺失值)。
在这里插入图片描述

>>> pd.merge(data1, data2, how='right', on='X1')

  右连接也是一种连接方式,其将 data1data2 两个 DataFrame 按照它们的 ‘X1’ 列进行右连接,并返回一个新的 DataFrame保留 data2 的所有行,并将 data1 中符合条件的行合并到 data2 中。如果 data1 中没有与 data2 匹配的行,则对应的列值将被设置为 NaN(缺失值)。
在这里插入图片描述

>>> pd.merge(data1, data2,how='inner',on='X1')

  将 data1data2 两个 DataFrame 按照它们的 ‘X1’ 列进行内连接,并返回一个新的 DataFrame就是所谓的内连接(inner join)。它 仅保留 data1 和 data2 中在 ‘X1’ 列上有匹配的行,并将它们合并到一起。
  参数中的 how=‘inner’ 表示使用内连接方式进行合并。其他可能的取值还有 ‘left’、‘right’ 和 ‘outer’,分别表示左连接右连接和接下来要介绍的外连接。on=‘X1’ 表示使用 ‘X1’ 列作为合并键(即共同的列)。
在这里插入图片描述

>>> pd.merge(data1, data2, how='outer',on='X1')

  将 data1data2 两个 DataFrame 按照它们的 ‘X1’ 列进行外连接,并返回一个新的 DataFrame。外连接(outer join)是一种合并方式,它会保留 data1 和 data2 中所有的行,并将它们根据 ‘X1’ 列的值进行合并。
  在外连接中,如果某个 DataFrame 中的行在另一个 DataFrame 中找不到匹配,那么对应的列值将被设置为 NaN(缺失值),表示缺失的数据


7.2 连接-Join

>>> data1.join(data2, how='right')

7.3 拼接-Concatenate

7.3.1 纵向拼接

>>> s.append(s2)

7.3.2 横向/纵向拼接

>>> pd.concat([s,s2],axis=1, keys=['One','Two']) 
>>> pd.concat([data1, data2], axis=1, join='inner')

八、日期

>>> df2['Date']= pd.to_datetime(df2['Date'])
>>> df2['Date']= pd.date_range('2000-1-1', periods=6, freq='M')
>>> dates = [datetime(2012,5,1), datetime(2012,5,2)]
>>> index = pd.DatetimeIndex(dates)
>>> index = pd.date_range(datetime(2012,2,1), end, freq='BM')

九、可视化

Matplotlib 是一个用于绘制数据可视化图形的 Python 库。它提供了各种函数和工具,用于创建各种类型的图表,包括线图、散点图、柱状图、饼图等等。

  现在我们导入 Matplotlib 库,并将其重命名为了 plt。这样,我们就可以 使用 plt 对象来调用 Matplotlib 的函数和方法,以便创建和修改图形了。

>>> import matplotlib.pyplot as plt

  现在,我们试试导入 Matplotlib 库使用 Pandas 库中 Series 对象.plot() 方法Matplotlib 库中的 plt.show() 函数 来生成并显示数据的默认图形。

>>> s.plot()
>>> plt.show()

在这里插入图片描述
我们也可使用 Pandas 库中 DataFrame 对象.plot() 方法Matplotlib 库 中的 plt.show() 函数 来生成并显示数据的默认图形。

>>> df2.plot()
>>> plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电气测试相关

项目: 长期过电压 瞬态过电压 瞬态欠压 跳跃启动 卸载 纹波电压 电源电压缓慢下降和上升 电源电压缓慢下降、快速上升 复位行为 短暂中断 启动脉冲 带电气系统控制的电压曲线 引脚中断 连接器中断 反极性 信号线和负载电路短路 启动行为 对分流不…

Flink之Task解析

Flink之Task解析 对Flink的Task进行解析前,我们首先要清楚几个角色TaskManager、Slot、Task、Subtask、TaskChain分别是什么 角色注释TaskManager在Flink中TaskManager就是一个管理task的进程,每个节点只有一个TaskManagerSlotSlot就是TaskManager中的槽位,一个TaskManager中可…

k8s问题汇总

作者前言 本文章为记录使用k8s遇到的问题和解决方法,文章持续更新中… 目录 作者前言正常配置ingress,但是访问错误添加工作节点报错安装k8s报错使用kubectl命令报错container没有运行安装会出现kubelet异常,无法识别删除k8s集群访问dashboa…

IT运维:使用数据分析平台监控深信服防火墙

概述 深信服防火墙自身监控可以满足绝大部分需求,比如哪个应用占了最大带宽,哪个用户访问了哪些网站?这里我们为什么使用鸿鹄呢?因为我们要的是数据的处理和分析,比如某个用户在某个事件都做了哪些行为,这个…

Nginx运行Vue项目:基本运行

需求 在Nginx服务器中,运行Vue项目。 说明 Vue项目打包生成的生产文件,是无法直接在浏览器打开的。需要放到Nginx服务器中,才能够访问。 本文章只介绍最基本的情况:Nginx中运行一个Vue项目。 实际生产环境,一个Ng…

Linux-C++开发项目:基于主从Reactor模式的高性能并发服务器

目录 1.项目介绍2.1项目部署2.2安装版本较高的编译器 2.项目开发过程2.1网络库模块开发2.1.1简单日志宏的实现2.1.2Buffer模块实现2.1.3Socket模块实现2.1.4Channel模块实现2.1.5Poller模块实现2.1.6TimerWheel模块实现2.1.7EventLoop模块实现2.1.8整合测试12.1.9LoopThread模块…

centos7离线安装gdal3.6.3

本文档以纯离线环境为基础,所有的安装包都是提前下载好的。以gdal3.6.3为例(其他版本安装步骤或方式可能不同),在centos7系统离线安装,并运行java项目,实现在java服务中调用gdal库解析地理数据。以下任意组…

【JavaEE基础学习打卡04】JDBC之MySQL数据库安装

目录 前言一、JDBC与数据库二、MySQL数据库1.MySQL数据库2.MySQL服务下载安装3.MySQL服务启动停止4.MySQL命令 三、MySQL客户端安装总结 前言 📜 本系列教程适用于JavaWeb初学者、爱好者,小白白。我们的天赋并不高,可贵在努力,坚持…

Ajax及前端工程化

Ajax:异步的js与xml。 作用: 1、通过ajax给服务器发送数据,并获得其响应的数据。 2、可以在不更新整个网页的情况下,与服务器交换数据并更新部分网页的技术。 一、同步与异步 二、原生Ajax 1、准备数据地址 2、创建XMLHttpReq…

Vitis高层次综合学习——FPGA

高层次综合 什么是高层次综合?就是使用高级语言(如C/C)来编写FPGA算法程序。 在高层次综合上并不需要制定微架构决策,如创建状态机、数据路径、寄存器流水线等。这些细节可以留给 HLS 工具,通过提供输入约束&#xff…

tauri-vue:快速开发跨平台软件的架子,支持自定义头部UI拖拽移动和窗口阴影效果

Tauri Vue Typescript 一个使用 taurivuets 开发跨平台软件的模板,支持窗口头部自定义 UI 和拖拽和窗口阴影,不用再自己做适配了,拿来即用,非常 nice。而且已经封装好了 tauri 的 http 请求工具,省去很多弯路。开源…

(二)结构型模式:8、代理模式(Proxy Pattern)(C++示例)

目录 1、代理模式(Proxy Pattern)含义 2、代理模式的UML图学习 3、代理模式的应用场景 4、代理模式的优缺点 5、C实现代理模式的实例 1、代理模式(Proxy Pattern)含义 代理模式(Proxy),为…

大数据-玩转数据-Flink 自定义Sink(Mysql)

一、说明 如果Flink没有提供给我们可以直接使用的连接器,那我们如果想将数据存储到我们自己的存储设备中,mysql 的安装使用请参考 mysql-玩转数据-centos7下mysql的安装 创建表 CREATE TABLE sensor (id int(10) ) ENGINEInnoDB DEFAULT CHARSETutf8二…

Wi-Fi 安全在学校中的重要性

Wi-Fi 是教育机构的基础设施,从在线家庭作业门户到虚拟教师会议,应有尽有。大多数 K-12 管理员对自己的 Wi-Fi 网络的安全性充满信心,并认为他们现有的网络安全措施已经足够。 不幸的是,这种信心往往是错误的。Wi-Fi 安全虽然经常…

Layui列表表头去掉复选框改为选择

效果&#xff1a; 代码&#xff1a; // 表头复选框去掉改为选择 $(".layui-table th[data-field"0"] .layui-table-cell").html("<span>选择</span>");

keil构建STM32工程并使用proteus仿真led点灯实验

STM32单片机与51单片机有很大区别&#xff0c;不仅结构上有很大差异&#xff0c;STM32更复杂一些&#xff0c;在操作上来说&#xff0c;STM32也要复杂很多&#xff0c;51单片机上手写代码&#xff0c;可以很直接操作引脚&#xff0c;但是STM32单片机在操作引脚之前需要作很多初…

数据结构——栈(C语言)

需求&#xff1a;无 栈的概念&#xff1a; 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端为栈底。栈中的数据元素遵守后进先出&#xff08;LIFO&#xff09;原则。压栈&…

分类预测 | MATLAB实现MTBO-CNN多输入分类预测

分类预测 | MATLAB实现MTBO-CNN多输入分类预测 目录 分类预测 | MATLAB实现MTBO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现MTBO-CNN多输入分类预测 2.代码说明&#xff1a;基于登山队优化算法&#xff08;MTBO&#xff09;、卷积神经…

ABAP: SQL 多值查询

基础查数据 问题举例&#xff1a;例如查物料类型为ZFRT、ZROH和ZRSA的物料编码。 1、直接查询&#xff0c;三种不同类型的物料类型是或的关系。 SELECT DISTINCT ma~matnr ma~mtartFROM mara AS maINNER JOIN mbewh AS mbON ma~matnr mb~matnrINTO CORRESPONDING FIELDS OF…

EmbedPress Pro 在WordPress网站中嵌入任何内容

EmbedPress Pro可让您通过高级自定义、自定义品牌、延迟加载和更多惊人功能嵌入源。为古腾堡块和Elementor编辑器提供支持的一体化 WordPress 嵌入解决方案。使用 EmbedPress 在古腾堡创建交互式内容。使用 EmbedPress 的古腾堡块立即将任何内容嵌入到您的网站。 网址: EmbedP…