香橙派AIpro开发板评测:部署yolov5模型实现图像和视频中物体的识别

OrangePi AIpro 作为业界首款基于昇腾深度研发的AI开发板,自发布以来就引起了我的极大关注。其配备的8/20TOPS澎湃算力,堪称目前开发板市场中的顶尖性能,实在令人垂涎三尺。如此强大的板子,当然要亲自体验一番。今天非常荣幸地拿到了一块OrangePi AIpro开发板,我迫不及待地选中了一款开源项目中模型进行部署,期待为大家带来一次精彩的体验。

在这里插入图片描述


一、香橙派AIpro介绍

1. 香橙派介绍

香橙派(Orange Pi)是一款开源的单板计算机,广泛应用于教育、嵌入式开发、物联网等领域。香橙派以其高性能和多样的功能模块,成为开发者和爱好者的理想选择。香橙派系列产品提供了丰富的接口和扩展能力,支持各种操作系统,如Android、Ubuntu、Debian等。

2. 香橙派AIpro开发版介绍

OrangePi AIpro 是2023.12月初,香橙派联合华为发布了基于昇腾的Orange Pi AIpro开发板,提供8/20TOPS澎湃算力,支持复杂的计算任务,适用于AI边缘计算、深度视觉学习、视频流AI分析等多个领域。作为业界首款基于昇腾深度研发的AI开发板,它搭载了高性能处理器和丰富的AI加速硬件,支持神经网络推理、图像识别等高计算需求的任务。

香橙派AIpro开发版正面:
在这里插入图片描述
香橙派AIpro开发版背面:
在这里插入图片描述

香橙派AIpro的主要特点包括:

特点详细描述
昇腾AI技术路线集成图形处理器,拥有8GB/16GB LPDDR4X内存。支持双4K高清输出,提供8/20 TOPS AI算力,支持复杂的计算任务,适用于AI边缘计算、深度视觉学习、视频流AI分析等。
丰富的接口包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB、两个MIPI摄像头、一个MIPI屏等。支持SATA/NVMe SSD 、以太网等,方便连接各种外设。
操作系统支持支持Ubuntu和openEuler操作系统,提供灵活的开发环境。
强大的AI加速模块昇腾AI技术路线,集成图形处理器,拥有8GB/16GB LPDDR4X内存。支持双4K高清输出,提供8/20 TOPS AI算力,提升深度学习和推理任务的效率。

二、香橙派AIpro评测(测试部署YOLOv5模型)

1. Xshell连接香橙派

确保香橙派已正确连接到电源和网络,并开启电源。

使用显示器和键盘登录香橙派,默认登录名为 HwHiAiUser,密码为 Mind@123。

点击右上角WIFI标识,继续点击“查看连接信息”,获取其内网IP地址,我的为 192.168.0.103。
在这里插入图片描述

然后,在你的电脑上启动Xshell,输入刚刚查到的内网IP和账号密码,远程连接香橙派,这样我们就能够通过Xshell远程操作开发板,Xftp同理,后面我们也需要用到Xftp实现个人电脑和开发板的文件同步。

登录成功如图:

在这里插入图片描述


2. 安装Python环境

为了在香橙派上运行YOLOv5模型,首先需要安装Python和pip。使用以下命令更新软件包列表并安装Python 3和pip:

sudo apt update
sudo apt install python3 python3-pip -y

在本次测评中,我们提前安装了Python 3.9。你可以通过以下命令检查已安装的Python版本:

python3 --version

确保输出的版本号符合要求,例如:Python 3.9.x。


3. 安装YOLOv5

从GitHub上下载YOLOv5代码库。
在这里插入图片描述

通过Xftp或其他文件传输工具将其拷贝到香橙派上。

在这里插入图片描述

在香橙派终端中,进入YOLOv5目录并解压压缩包:

unzip yolov5-master.zip
cd yolov5-master

在这里插入图片描述

进入解压后的目录后,使用以下命令安装所需的Python依赖:

pip3 install -r requirements.txt

在这里插入图片描述

这些依赖包括PyTorch、OpenCV等YOLOv5运行所需的库。


4. 使用预训练模型识别图片

为了测试YOLOv5模型的效果,我们将使用预训练模型识别一张公交车场景的示例图片。运行以下命令:

python segment/predict.py --weights yolov5m-seg.pt --data data/images/bus.jpg

在这里插入图片描述

此命令将加载预训练的YOLOv5模型,并在指定的图片上进行目标检测。识别结果将保存在runs/predict目录下,你可以查看输出的图片文件。

这里我们比较以下识别前后的公交车场景的示例图片:

识别前:

在这里插入图片描述

识别后:

在这里插入图片描述

通过对比识别结果和原始图片,你会发现YOLOv5模型在识别效率和精度方面表现非常出色。无论是公交车的轮廓还是细节,模型都能够准确地识别并标注出来,显示了其强大的图像处理能力。


5. 选择最优模型

在测试了YOLOv5预训练模型后,你可能希望选择一个最优模型来满足特定的需求。YOLOv5提供了多个不同的模型变种(如YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x),这些模型在性能和精度上各有侧重。你可以根据需要选择最适合的模型。

首先,下载其他模型的权重文件:

wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5m.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5l.pt
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt

然后,分别使用不同的模型权重进行测试,比较它们的性能和精度。例如,使用YOLOv5s模型:

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/bus.jpg

你可以通过比较不同模型在同一图片上的检测结果,选择性能和精度最符合你需求的模型。记录下检测时间和精度数据,帮助你做出最优选择。


6. 连接摄像头调试

为了进一步验证YOLOv5模型的性能,可以连接摄像头进行实时视频流的检测。首先,确保香橙派支持并正确连接摄像头。你可以使用USB摄像头或MIPI摄像头接口。

在这里插入图片描述

安装摄像头依赖:

sudo apt install v4l-utils -y

检查摄像头连接:

使用以下命令检查摄像头是否已连接:

v4l2-ctl --list-devices

运行实时检测:

使用YOLOv5模型对实时视频流进行检测。假设摄像头设备路径为/dev/video0,运行以下命令:

python detect.py --weights yolov5m.pt --img 640 --conf 0.25 --source 0

这里,--source 0 指定了摄像头设备为默认的/dev/video0,需要根据实际情况更改设备路径。

效果如下:

在这里插入图片描述

通过这些步骤,你可以在香橙派上成功部署并调试YOLOv5模型,实现实时视频流的目标检测。结合摄像头的实际使用情况和模型的检测结果,可以进一步优化模型参数和系统性能,以满足具体应用场景的需求。


三、使用感受及产品评价

1. 使用感受

在使用香橙派AIpro进行YOLOv5模型的测试部署过程中,香橙派AIpro的表现非常出色。通过Xshell远程连接香橙派,操作简便,响应迅速。Python环境的安装和YOLOv5的部署过程也十分顺利,依赖安装快捷,模型运行稳定,识别结果准确。

香橙派AIpro的强大硬件配置在处理复杂计算任务时表现尤为突出,特别是其AI加速模块,在深度学习任务中提供了显著的性能提升。此外,香橙派AIpro提供了丰富的学习资料和开发资源,包括详细的用户指南、案例教程和产品文档,为开发者提供了全方位的支持,使其能够更快地上手并实现各种AI应用。

整体使用体验非常流畅,产品质量优秀,是开发和学习AI技术的理想平台。无论是教育用途还是专业开发,香橙派AIpro都能满足用户的需求,值得推荐。

2. 产品评价

经过评测,我认为香橙派AIpro是一款非常不错的产品,从几个评价维度出发,我为大家列出了如下总结。

评价维度详细描述
硬件性能香橙派AIpro配备8/20TOPS算力,在同类产品中处于领先地位。无论是进行深度学习模型的训练还是推理,AI加速模块都能显著提升性能,确保任务高效完成。
软件支持支持Ubuntu和openEuler操作系统,为开发者提供了灵活的开发环境。丰富的学习资源,包括用户指南、案例教程和产品文档,使开发者能够轻松上手,快速实现AI应用的开发和部署。
扩展性香橙派AIpro具有出色的扩展性。丰富的接口配置,如双HDMI输出、USB3.0、Type-C电源接口、M.2插槽等,满足各种外设连接需求。无论是连接显示器、摄像头,还是扩展存储,香橙派AIpro都能提供良好的支持。
性价比考虑到其强大的性能和丰富的功能,香橙派AIpro的价格非常具有竞争力。对于教育用途和专业开发者来说,这是一款性价比极高的AI开发板,能够在预算内实现高效的AI开发和应用。
用户体验总体来说,香橙派AIpro的用户体验非常出色。无论是硬件性能、软件支持,还是扩展性和性价比,都表现得非常优异。特别是在部署和运行YOLOv5等深度学习模型时,操作简便、运行稳定,显示出其强大的计算能力和稳定性。

香橙派AIpro是一款高性能、高可靠性的开发板,适合各种人工智能和深度学习应用场景。其丰富的学习资源和强大的硬件配置使其成为AI开发者和爱好者的不二之选。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/773375.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】BMP图片结构深度解析及其在C++中的操作与应用

引言 BMP(Bitmap Image File)是一种与设备无关的图像文件格式,它采用了一种非常直接的方式来存储图像数据,即按照图像的行和列顺序,逐像素地存储颜色值。由于其简单性和可移植性,BMP文件在图像处理、图像分…

看看这组B端规范,你就会感叹:钱真是万能的。

B端设计规范的作用和价值主要体现在以下几个方面: 统一视觉风格和用户体验:B端设计规范可以规定统一的视觉风格和用户界面,使得不同的产品和服务在外观和交互上保持一致,提升用户的使用体验和满意度。 提高产品开发效率&#xf…

Android Studio下载Gradle特别慢,甚至超时,失败。。。解决方法

使用Android studio下载或更新gradle时超级慢怎么办? 切换服务器,立马解决。打开gradle配置文件 修改服务器路径 distributionUrlhttps\://mirrors.cloud.tencent.com/gradle/gradle-7.3.3-bin.zip 最后,同步,下载,速…

【RAG检索增强生成】MaxKB:构建企业级知识库问答系统(Ollama+Qwen2)

目录 引言1、MaxKB概述1.1 定义与目标1.2 特点与优势 2、MaxKB原理3、MaxKB架构4、基于MaxKBOllamaQwen2搭建本地知识库4.1 环境准备4.2 部署MaxKB4.3 部署Ollama4.4 部署运行qwen24.5 知识库配置4.5.1登录 MaxKB 系统4.5.2上传文档4.5.3设置分段规则 4.6 模型配置4.7 创建应用…

一入“网贷”深似海:来自多名负债人的真实自述!

在温州,有个名叫小琴的25岁女孩,她的故事,是许多年轻人深陷网贷泥潭的一个缩影。小琴,一个普通的大学毕业生,两年的职场生涯并未能让她摆脱大学时期留下的网贷阴影。那时,她每月靠着1000元的生活费勉强维持…

注意!Vue.js 或 Nuxt.js 中请停止使用.value

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 当您在代码中使用.value时,必须每次都检查变量是否存在并且是引用。 这可能很麻烦,因为在运行时使用.value可能会导致错误。然而,有一个简单的解决方法,即…

力扣61. 旋转链表(java)

思路:用快慢指针找到最后链表k个需要移动的节点,然后中间断开节点,原尾节点连接原头节点,返回新的节点即可; 但因为k可能比节点数大,所以需要先统计节点个数,再取模,看看k到底需要移…

【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)

目录 概述: 1. 阻塞IO (Blocking IO) 2. 非阻塞IO (Non-blocking IO) 3. IO多路复用 (I/O Multiplexing) 4. 信号驱动IO (Signal-driven IO) 阻塞式IO 非阻塞式IO 信号驱动IO(Signal-driven IO) 信号IO实例: IO多路复用…

2024企业加密软件丨为什么企业需要防泄密

企业为什么需要防泄密? 企业的数据中包含了许多核心机密,如研发成果、商业计划、客户资料等。这些信息的泄露可能使竞争对手获得不正当的优势,给企业带来严重损失。 数据泄露事件往往会对企业的声誉造成负面影响,降低客户信任度…

【ROS2】Ubuntu 24.04 源码编译安装 Jazzy Jalisco

目录 系统要求 系统设置 设置区域启用所需的存储库安装开发工具 构建 ROS 2 获取 ROS 2 代码使用 rosdep 安装依赖项安装额外的 RMW 实现(可选)在工作区构建代码 设置环境 尝试一些例子 下一步 备用编译器 Clang保持最新状态 故障排除 卸载 系统要求 当前…

RRStudio 下载及安装(详尽版)

R语言来自S语言,是S语言的一个变种。S语言、C语言、Unix系统都是贝尔实验室的研究成果。R 语言是一种解释型的面向数学理论研究工作者的语言,主要用于统计分析、绘图、数据挖掘。 R 语言自由软件,免费、开放源代码,支持各个主要计…

python实现windows非白名单exe监控并杀死

目录 一、限定死白名单 二、增加自定义白名单文件 需求:孩子在家用电脑上网课,总是悄悄打开游戏或视频软件 方案:指定白名单exe,打开非白名单的就自动被杀死,并记录日志供查看 一、限定死白名单 import psutil imp…

【C语言】continue 关键字

当在C语言中使用continue关键字时,它用于控制循环语句的执行流程。与break不同,continue不会终止整个循环,而是终止当前迭代,并立即开始下一次迭代。这种行为使得可以在循环内部根据特定条件跳过某些代码块,从而控制程…

中国国家标准介绍

一、介绍 中国国家标准信息公共服务平台,这是由中国国家市场监督管理总局和中国国家标准化管理委员会共同运营的官方网站 https://openstd.samr.gov.cn/ 标准分为三类: GB:强制性国家标准GB/T:推荐行国家标准GB/Z:指导…

LT86101UXE 国产原装 HDMI2.0 / DVI中继器方案 分辨率 4Kx2K 用于多显示器 DVI/HDMI电缆扩展模块

1. 描述 Lontium LT86101UXE HDMI2.0 / DVI中继器特性高速中继器符合HDMI2.0/1.4规范,最大6 gbps高速数据率、自适应均衡RX输入和pre-emphasized TX输出支持长电缆应用程序,没有晶体在船上保存BOM成本,内部灵活的PCB TX巷交换路由。 LT86101UXE HDMI2.0/DVI中继器自动检测线缆损…

傅里叶变换

傅里叶定理指出: 任何信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。在一维领域,信号是一维正弦波的叠加,那么想象一下,在二维领域,实际上是无数二维平面波的叠加,$(x&…

【面向就业的Linux基础】从入门到熟练,探索Linux的秘密(九)-git(1)

Git是一个版本管理控制系统(缩写VCS),它可以在任何时间点,将文档的状态作为更新记录保存起来,也可以在任何时间点,将更新记录恢复回来。 文章目录 前言 一、git是什么 二、git基本概念 三、git基本命令 总结…

Vue3中为Ant Design Vue中Modal.confirm自定义内容

在一次业务开发时代码时,碰到了一种既想要Modal.confirm样式,又想要定制其content内容的情况。 大部分情况下,使用Modal.method()这种方式时,可能content内容固定都是字符串,那如果想要做更高级的交互怎么办&#xff…

将QT移植到IMX6ULL开发板

文章目录 前言一、编译系统1.设置交叉编译工具链2.编译系统3.烧写 二、Linux中下载QT1.安装 Qtcreator2.创建第一个程序3.配置 QtCreator 开发环境(1)打开选项界面(2)选择编译器(3)设置编译器(4…

SoftCLT: 时间序列的软对比学习《Soft Contrastive Learning for Time Series》(时间序列、时序分类任务、软...

2024年6月25日,10:11,好几天没看论文了,一直在摸鱼写代码(虽然也没学会多少),今天看一篇师兄推荐的。 论文: Soft Contrastive Learning for Time Series 或者是: Soft Contrastive Learning for Time Seri…