6种ETL计算引擎介绍

目录

一、ETL计算引擎定义

二、ETL计算引擎的功能和特性

三、6种ETL计算引擎

1、MapReduce

2、Tez

3、Spark

5、ClickHouse

6、Doris


ETL计算引擎定义

ETL(Extract, Transform, Load)计算引擎是用于执行ETL过程中数据转换阶段的关键组件之一。它负责处理从不同数据源抽取的数据,并根据预定义的转换规则进行数据的清洗、整合、计算和格式化等操作,最终将处理后的数据加载到目标系统(如数据库、数据仓库等)中。ETL计算引擎是ETL过程中的核心技术组件,通过其强大的数据处理能力和功能特性,可以实现从多源数据提取、转换到加载目标系统的全流程数据管理和处理。

二、ETL计算引擎的功能和特性

1.数据清洗和验证

对从源系统抽取的数据进行清洗,确保数据的准确性和一致性。这可能包括去除重复数据、处理缺失值、统一数据格式等操作。

2.数据转换

根据预定义的业务逻辑和转换规则,对数据进行转换和计算。例如,可以进行数据格式化、计算衍生字段、进行数学运算或逻辑运算等。

3.数据映射和重构

将来自不同数据源的数据映射到目标系统的数据模型中。这可能涉及到对数据结构进行重构,以适应目标系统的数据模式。

4.性能优化

处理大量数据时,ETL计算引擎需要具备高效的性能和处理能力,以确保数据转换和加载的速度和效率。

5.任务调度和监控

管理和监控ETL任务的执行,包括调度任务的执行时间、任务失败时的错误处理以及实时监控任务执行状态等功能。

6.容错和恢复能力

在处理过程中,ETL计算引擎需要具备容错机制,以应对突发情况或异常,确保数据处理的稳定性和完整性。

7.扩展性和灵活性

支持多种数据源和目标系统,以及灵活的配置选项和定制化需求,以满足不同业务场景下的数据处理要求。

、6种ETL计算引擎

1、MapReduce

MapReduce是一种用于处理大规模数据集的并行计算模型,通常运行在Hadoop等分布式计算平台上,能够处理数十亿条记录和数百台计算机组成的大规模数据集。MapReduce采用“分而治之”策略,将一个存储在分布式文件系统中的大规模数据集切分成许多独立的分片,这些分片可以被多个Map任务并行处理。Map和Reduce函数可以由用户自定义实现,这样MapReduce可以适用于各种不同的计算任务。

然而,MapReduce模型也存在以下缺陷:

1. 抽象层次较低:开发者需要手工完成大量的底层逻辑,这使得开发变得复杂且难以维护。

2. 只提供Map和Reduce操作:许多现实中的场景并不适用于该模型,实现复杂的操作需要技巧,从而导致整个工程庞大且难以维护。

3. 系统延迟:Hadoop中每个Job的计算结果都存储在HDFS中,每次计算都需要进行硬盘的读取和写入,导致系统延迟增加。

因此,随着大数据场景不断发展,一些新的计算框架模型也正在逐渐浮出水面,例如下面将要介绍的Apache Spark、Apache Flink等。这些框架模型推动了大数据处理的快速、高效和灵活发展,并且正在逐步替代MapReduce。

MapReduce 工作流程

2、Tez

Hadoop虽然能处理大规模数据且具有良好的水平扩展性,但对用户而言使用难度仍然很大。因此,Hive的出现恰好解决了这个问题,这使得Hive被迅速推广并成为大数据时代数据仓库组件的代名词。

Hive使用HDFS作为存储,使用MapReduce作为计算引擎。

为了解决Hive执行性能太差的问题,在计算引擎方面出现了Tez。

Tez是一款开源的计算框架,支持DAG(有向无环图,Directed Acyclic Graph)作业。Tez将Map/Reduce过程拆分成若干个子过程,并可以将多个Map/Reduce任务组合成一个较大的DAG任务,减少了Map/Reduce之间的文件存储,并且通过合理组合子过程,可以减少任务的运行时间。加上内存计算,Tez的计算性能实际上可以与Spark相媲美。

MR 与 Tez 的比较

3、Spark

Apache Spark是一个以速度、易用性和复杂分析为基础的大数据处理框架。Apache Spark具有广泛的应用场景,包括:

1. 离线计算:使用算子或SQL执行大规模批处理,对标MapReduce、Hive。同时提供了对各种数据源的读写支持。

2. 实时处理:以一种微批的方式,使用各种窗口函数对流式数据进行实时计算。主要实现在这两部分:Spark Streaming、Structured Streaming(Spark 2.3版本推出)。

3. MLlib:一个常用的机器学习算法库,算法被实现为对RDD的Spark操作。该库包含各种可扩展的学习算法,例如分类、回归等需要对大量数据集进行迭代操作的算法。

4. GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作等。

SparkUI Stage 页面

在Spark中,内置的数据结构有RDD、DataFrame和DataSet,其中:

1. RDD:弹性分布式数据集,它代表一个可以被分区(partition)的只读数据集,内部可以有很多分区,每个分区又有大量的数据记录(record)。RDD是已被分区、不可变的数据集,可以被并行操作。

2. DataFrame:可以被视为一种特殊的DataSet。

3. DataSet:Spark 1.6版本引入的接口,类似于关系型数据库中的表,提供数据表的schema信息,比如列名、列数据类型等。

RDD、DataFrame、DataSet 对比

Flink是一个强大而灵活的分布式数据处理框架,被广泛地应用于流式数据处理和批处理任务,并且具有许多优点,如高性能、低延迟、强大的容错性、支持多种数据源和格式、易于使用等等。Flink的架构设计基于基于流的数据流和基于批处理的数据集两个API,这使得它非常灵活,可以适应各种数据处理任务的需求。Flink提供了多种高抽象层的API用于分布式任务的编写,如:

1. DataSet API:用于处理静态数据的批处理操作,将静态数据抽象成分布式的数据集。用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理。支持Java、Scala和Python编程语言。

2. DataStream API:用于处理数据流的流处理操作,将流式的数据抽象成分布式的数据流。用户可以方便地进行各种操作来处理分布式数据流。支持Java和Scala。

3. Table API:用于查询结构化数据,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作。支持Java和Scala。

4. Flink ML:Flink的机器学习库。

5. Gelly:Flink的图计算库,提供了与图计算相关的API和多种图计算算法实现。

这些API可以帮助用户更轻松地编写各种分布式任务,从而更方便地处理数据,并支持众多的编程语言和计算领域。此外,Flink还提供了丰富的可扩展性和自定义性,使用户能够轻松地根据自己的需求进行更深入的定制和优化。

Flink 组件栈

Flink相对于Spark,具有其独特的优势,比如更高层次的抽象、更简洁的调用方式、高的吞吐,更少的资源占用等。但是Flink想要完全超越Spark,还有一些问题需要解决,如SQL的支持、批流一体的实现、机器学习、图计算等等。

对于数据开发者来说,Spark相比于MapReduce支持的场景更广,使用起来也更加容易。而Flink相比于Spark同样更易用。所以未来大数据开发的门槛将会越来越低,如完全SQL化、低代码等技术的发展,甚至会像传统ETL工具一样无代码。大数据从业者需要跟上技术的发展趋势,不断更新自己的技术知识,并不断提高自己的技能和能力,以适应未来大数据行业的发展。

5、ClickHouse

ClickHouse是俄罗斯搜索引擎公司Yandex于2016年开源的一款数据分析MPP数据库。作为数据库,它在计算层面采用了许多技术,如单机多核并行、分布式计算、向量化执行、SIMD指令、代码生成等,以提高查询速度。在普通的大数据集群中,ClickHouse可以在几秒钟内查询十几亿条数据,因此在许多即席查询场景中被广泛使用。

ClickHouse具有成熟的稳定性和高性能,可以用于处理海量数据。但是,使用ClickHouse需要掌握特定的技术,调优也比较复杂,因此需要有相应的经验和技能。但是,随着越来越多人对此感兴趣和认可,ClickHouse也成为了大数据处理的一个重要工具之一。

ClickHouse界面

6、Doris

ClickHouse是一个非常优秀的产品,但也有一些缺点。比如,ClickHouse过度依赖大宽表,较难应对高并发的业务场景,而且并不完全支持标准SQL和UDF等,同时ClickHouse的集群运维也是比较复杂的,需要一定的经验和技能。Apache Doris的诞生试图解决这些问题,使得大数据查询和分析更加容易和高效。

Apache Doris是一个现代化的MPP分析型数据库产品,由百度开源并贡献给Apache社区,具有以下特点:

1. 响应时间短。Apache Doris的响应时间非常短,仅需要亚秒级的时间即可获得查询结果,因此能够有效地支持实时数据分析。

2. 架构简洁,扩展性高。Apache Doris的分布式架构非常简洁,易于运维,并且具备很高的扩展性,可以支持10PB以上的超大数据集。

3. 满足多种数据分析需求。Apache Doris可以满足多种数据分析需求,例如固定历史报表、实时数据分析、交互式数据分析和探索式数据分析等。

4. 支持多种数据源。Apache Doris支持多种数据源和多种数据格式的导入和导出,还提供了灵活的数据模型,支持多维数据分析、多维度数据查询和跨表联合查询。

Doris 示意图

在以上6种ETL计算引擎中,ClickHouse和Apache Doris都是MPP分析型数据库产品。帆软推出的FineDataLink是一款ETL工具,同时也是一个数据集成平台,可以对接ClickHouse、Doris、StarRocks等MPP数据库,这使得数据开发工程师在“从常规数据库到大数据转移”阶段——实现“ETL零学习成本”,也使得企业拥有高性能存储的同时具备轻松驾驭数据洞察力,从数据集成到BI自主分析。

FDL功能体验请点击:FineDataLink功能体验

往期内容推荐:

「ETL趋势」FDL数据开发支持版本管理、实时管道支持多对一、数据源新增支持神通-CSDN博客

什么是数据同步?数据同步时发生中断怎么办?_中断的数据同步怎么解决-CSDN博客

【数据同步】什么是ETL增量抽取?-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/771874.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分布式计算、异构计算与算力共享

目录 算力 算力共享的技术支撑 云计算技术 边缘计算技术 区块链技术 分布式计算、异构计算与算力共享 分布式计算:计算力的“集团军作战” 异构计算:计算力的“多兵种协同” 算力共享:计算力的“共享经济” 深入融合,共创计算新纪元 算力共享对科研领域的影响 …

stm8玩耍日记1

写在前面,如题所示,这是一个stm8L051F3的玩耍记录。 环境使用的是IAR for stm8,使用stlink v2作为调试下载器,跟着st中文论坛的一个大佬的教程学习的。 整体配置下来,点亮了led,感觉和stm32的开发差不多&…

java项目自定义打印日志,打印请求方式,参数用时等

1.相关依赖 <!-- 私人工具包 --><dependency><groupId>cn.changeforyou</groupId><artifactId>location</artifactId><version>1.13-SNAPSHOT</version></dependency><!-- hutool工具依赖 --><dependency>…

路由器的ip地址与网关的区别是什么

在网络世界中&#xff0c;路由器扮演着至关重要的角色&#xff0c;它负责数据的传输和网络的互联。而在路由器的设置中&#xff0c;有两个常见的概念&#xff1a;IP地址和网关。那么&#xff0c;路由器的IP地址与网关的区别是什么&#xff1f;下面与虎观代理小二一起了解一下吧…

HQ-SAM

不建议复现

前后端分离:四种开发模式与实践指南

前后端分离&#xff1a;四种开发模式与实践指南 什么是前后端分离 当业务变得越来越复杂或产品线越来越多时&#xff0c;原有的开发模式就无法满足业务需求了。 产品越来越多&#xff0c;展现层的变化越来越快、越来越多&#xff0c;此时应该进行前后端分离的分层抽象&#…

MySQL数据恢复(适用于误删后马上发现)

首先解释一下标题&#xff0c;之所以适用于误删后马上发现是因为太久了之后时间和当时操作的数据表可能会记不清楚&#xff0c;不是因为日志丢失 1.首先确保自己的数据库开启了binlog&#xff08;我的是默认开启的我没有配置过&#xff09; 根据这篇博客查看自己的配置和自己…

线段树求区间最值问题

引言 今天主要还是练了两道题&#xff0c;是有关线段树如何去求一个区间内的最值问题的&#xff0c;我们可以用线段树来解决。 对应一个无法改变顺序的数组&#xff0c;我们想要去求一个区间内的最值&#xff0c;假设有n个结点&#xff0c;m次询问&#xff0c;暴力的解决办法…

Spring Bean生命周期

Bean生命周期&#xff1a; 创建 Bean 的实例&#xff1a;Bean 容器首先会找到配置文件中的 Bean 定义&#xff0c;然后使用 Java 反射 API 来创建 Bean 的实例。 Bean 属性赋值/填充&#xff1a;为 Bean 设置相关属性和依赖&#xff0c;例如Autowired 等注解注入的对象、Value…

怎样将word默认Microsoft Office,而不是WPS

设置——>应用——>默认应用——>选择"word"——>将doc和docx都选择Microsoft Word即可

Java-数据结构

数据结构概述 常见的数据结构 栈 队列 数组 链表 二叉树 二叉查找树 平衡二叉树 红黑树 示例&#xff1a;

电气-伺服(4)CANopen

一、CAN Controller Area Network ,控制器局域网&#xff0c;80年的德国Bosch的一家公司研发可以测量仪器直接的实时数据交换而开发的一款串行通信协议。 CAN发展历史 二、CAN 的osi 模型 CAN特性&#xff1a; CAN 的数据帧 三、CANopen 什么是CANopen CANopen 的网络模型 …

怎么用AI合成PPT?这5款风靡全球的AIPPT软件一定要知道!

当下我们已进入信息过载的时代&#xff0c;每天有无数的信息试图争夺我们的注意力&#xff0c;与此同时&#xff0c;我们也需要向别人展示和呈现信息&#xff0c;这就要求我们能够以最低的成本&#xff0c;在短时间内引起对方的注意&#xff0c;这其中最常用到的工具非PPT莫属。…

CVPR 2024最佳论文:“神兵”的组合器 Generative Image Dynamics

CVPR 2024的最佳论文来自谷歌、美国加州大学圣迭戈分校。两篇都来至于视频生成领域&#xff0c;可见今年外界对视频生成领域关注度很高。今天的这篇是“Generative Image Dynamics”&#xff0c;Google Research发布的。它的研究成果令人震惊&#xff0c;从单张RGB图像生成连续…

c语言回顾-内存操作函数

目录 前言 1.memcpy 函数 1.1函数介绍 1.2与strcpy的区别 1.3memcpy的模拟 2.memmove 函数 2.1函数介绍和使用 2.2函数的模拟 3.memset函数 3.1函数介绍 3.2函数的模拟 4.memcmp函数 4.1函数的使用 4.2函数的模拟 结束语 前言 在动态内存的章节中小编详细讲解了动…

【代码随想录】【算法训练营】【第51天】 [115]不同的子序列 [583]两个字符串的删除操作 [72]编辑距离

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 51&#xff0c;周四&#xff0c;又是不能坚持的一天~ 题目详情 [115] 不同的子序列 题目描述 115 不同的子序列 解题思路 前提&#xff1a;转换为t为s的子序列的个数&#xff0c;元素的相对…

flask项目部署总结

这个部署的时候要用虚拟环境&#xff0c;cd进项目文件夹 python3 -m venv myenv source myenv/bin/activate激活 之后就安装一些库包之类的&#xff0c;&#xff08;flask&#xff0c;requests,bs4,等等&#xff09; 最重要的是要写.flaskenv文件并且pip install 一个能运行…

【MySQL】InnoDB的存储结构

InnoDB的存储结构&#xff1a;每个表都会生成一个表空间文件&#xff0c;这个文件里面最小结构就是行&#xff0c;存储的真正的数据&#xff0c;一个页来管理若干行&#xff0c;一个区来管理若干页&#xff0c;一个区组来管理若干区。段并不是真正的物理存储结构&#xff0c;它…

计组期末复习

本内容是我在计组期末复习时的记录&#xff0c;可能对你的复习帮助不大。下面是我复习时看的一些资料和视频&#xff1a; 知识体系&#xff1a; 【【计算机组成原理】计算机组成原理期末考试速成课&#xff0c;不挂科&#xff01;&#xff01;】https://www.bilibili.com/video…

轻松跨越国界:使用WildCard畅享全球AI服务

大家好&#xff0c;现在AI技术已经深入到我们的日常生活中。然而&#xff0c;许多朋友仍然难以获取优质的AI工具和应用。那么&#xff0c;如何才能使用像ChatGPT这样的AI服务呢&#xff1f; 今天我为大家介绍一个“一劳永逸”的解决方案&#xff0c;它就是我们的主角——WildC…