python数据分析入门学习笔记

  
目录  
一、  数据分析有关的python库简介  

(一)numpy

(二)pandas

(三)matplotlib

(四)scipy

(五)statsmodels

(六)scikit-learn

二、  数据的导入和导出  
三、  数据筛选  
四、  数据描述  
五、  数据处理  
六、  统计分析  
七、  可视化  
八、  其它


![](https://images2015.cnblogs.com/blog/911998/201603/911998-20160313205633319-924258473.png)

  
1.Numpy:
  Numpy是python科学计算的基础包,它提供以下功能(不限于此):
    (1)快速高效的多维数组对象ndarray     (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数
    (3)用于读写硬盘上基于数组的数据集的工具
    (4)线性代数运算、傅里叶变换,以及随机数生成
    (5)用于将C、C++、Fortran代码集成到python的工具

2.pandas
  pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据(如SQL)灵活的数据处理能力。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。
  对于金融行业的用户,pandas提供了大量适用于金融数据的高性能时间序列功能和工具。
  DataFrame是pandas的一个对象,它是一个面向列的二维表结构,且含有行标和列标。
  ps.引用一段网上的话说明DataFrame的强大之处:
  Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。 说了一大堆它的好处,要实际感触还得动手码代码。

3.matplotlib
  matplotlib是最流行的用于绘制数据图表的python库。

4.Scipy
  Scipy是一组专门解决科学计算中各种标准问题域的包的集合。  
5.statsmodels: https://github.com/statsmodels/statsmodels  
6.scikit-learn: http://scikit-learn.org/stable/


一.数据导入和导出
(一)读取csv文件
 1.本地读取
import pandas as pd
df \= pd.read\_csv('E:\\\\tips.csv')  #根据自己数据文件保存的路径填写(p.s.  python填写路径时,要么使用/,要么使用\\\\)  
#输出:
     total\_bill   tip     sex smoker   day    time  size
0         16.99  1.01  Female     No   Sun  Dinner     2
1         10.34  1.66    Male     No   Sun  Dinner     3
2         21.01  3.50    Male     No   Sun  Dinner     3
3         23.68  3.31    Male     No   Sun  Dinner     2
4         24.59  3.61  Female     No   Sun  Dinner     4
5         25.29  4.71    Male     No   Sun  Dinner     4
..          ...   ...     ...    ...   ...     ...   ...
240       27.18  2.00  Female    Yes   Sat  Dinner     2
241       22.67  2.00    Male    Yes   Sat  Dinner     2
242       17.82  1.75    Male     No   Sat  Dinner     2
243       18.78  3.00  Female     No  Thur  Dinner     2
\[244 rows x 7 columns\]
2.网络读取
import pandas as pd
data\_url \= "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv" #填写url读取
df = pd.read\_csv(data\_url)
#输出同上,为了节省篇幅这儿就不粘贴了
3.read\_csv详解

功能: Read CSV (comma-separated) file into DataFrame
read\_csv(filepath\_or\_buffer, sep=',', dialect=None, compression='infer', doublequote=True, escapechar=None, quotechar='"', quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index\_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip\_footer=0, na\_values=None, true\_values=None, false\_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim\_whitespace=False, as\_recarray=False, na\_filter=True, compact\_ints=False, use\_unsigned=False, low\_memory=True, buffer\_lines=None, warn\_bad\_lines=True, error\_bad\_lines=True, keep\_default\_na=True, thousands=None, comment=None, decimal='.', parse\_dates=False, keep\_date\_col=False, dayfirst=False, date\_parser=None, memory\_map=False, float\_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle\_dupe\_cols=True, tupleize\_cols=False, infer\_datetime\_format=False, skip\_blank\_lines=True)
参数详解:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read\_csv.html

(二)读取Mysql数据
  假设数据库安装在本地,用户名为myusername,密码为mypassword,要读取mydb数据库中的数据
import pandas as pd
import MySQLdb
mysql\_cn\= MySQLdb.connect(host='localhost', port=3306,user='myusername', passwd='mypassword', db='mydb')
df \= pd.read\_sql('select \* from test;', con=mysql\_cn)    
mysql\_cn.close()
上面的代码读取了test表中所有的数据到df中,而df的数据结构为Dataframe。
ps.MySQL教程:http://www.runoob.com/mysql/mysql-tutorial.html
(三)读取excel文件
要读取excel文件还需要安装xlrd模块,pip install xlrd即可。
df = pd.read\_excel('E:\\\\tips.xls')

(四)数据导出到csv文件
df.to\_csv('E:\\\\demo.csv', encoding='utf-8', index=False) 
#index=False表示导出时去掉行名称,如果数据中含有中文,一般encoding指定为‘utf-8’

(五)读写SQL数据库

import pandas as pd
import sqlite3
con \= sqlite3.connect('...')
sql \= '...'
df\=pd.read\_sql(sql,con)

#help文件
help(sqlite3.connect)
#输出
Help on built-in function connect in module \_sqlite3:

connect(...)
    connect(database\[, timeout, isolation\_level, detect\_types, factory\])
    
    Opens a connection to the SQLite database file \*database\*. You can use
    ":memory:" to open a database connection to a database that resides in
    RAM instead of on disk.
#############
help(pd.read\_sql)
#输出
Help on function read\_sql in module pandas.io.sql:

read\_sql(sql, con, index\_col\=None, coerce\_float=True, params=None, parse\_dates=None, columns=None, chunksize=None)
    Read SQL query or database table into a DataFrame.

ps.数据库的代码是我直接从网络上粘贴过来的,没有测试过是不是可行,先贴上来。

数据库我还在摸索中,学习心得学习笔记之类的大家可以一起分享23333~
 二.提取和筛选需要的数据
(一)提取和查看相应数据 (用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)
print df.head() #打印数据前五行  
#输出
   total\_bill   tip     sex smoker  day    time  size
0       16.99  1.01  Female     No  Sun  Dinner     2
1       10.34  1.66    Male     No  Sun  Dinner     3
2       21.01  3.50    Male     No  Sun  Dinner     3
3       23.68  3.31    Male     No  Sun  Dinner     2
4       24.59  3.61  Female     No  Sun  Dinner     4
print df.tail()  #打印数据后5行
#输出
     total\_bill   tip     sex smoker   day    time  size
239       29.03  5.92    Male     No   Sat  Dinner     3
240       27.18  2.00  Female    Yes   Sat  Dinner     2
241       22.67  2.00    Male    Yes   Sat  Dinner     2
242       17.82  1.75    Male     No   Sat  Dinner     2
243       18.78  3.00  Female     No  Thur  Dinner     2
print df.columns  #打印列名
#输出
Index(\[u'total\_bill', u'tip', u'sex', u'smoker', u'day', u'time', u'size'\], dtype='object')
print df.index  #打印行名
#输出
Int64Index(\[  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,
            ...
            234, 235, 236, 237, 238, 239, 240, 241, 242, 243\],
           dtype\='int64', length=244)
print df.ix\[10:20, 0:3\]  #打印10~20行前三列数据
#输出
    total\_bill   tip     sex
10       10.27  1.71    Male
11       35.26  5.00  Female
12       15.42  1.57    Male
13       18.43  3.00    Male
14       14.83  3.02  Female
15       21.58  3.92    Male
16       10.33  1.67  Female
17       16.29  3.71    Male
18       16.97  3.50  Female
19       20.65  3.35    Male
20       17.92  4.08    Male
#提取不连续行和列的数据,这个例子提取的是第1,3,5行,第2,4列的数据
df.iloc\[\[1,3,5\],\[2,4\]\]
#输出
    sex  day
1  Male  Sun
3  Male  Sun
5  Male  Sun
#专门提取某一个数据,这个例子提取的是第三行,第二列数据(默认从0开始算哈)
df.iat\[3,2\]
#输出
'Male'
print df.drop(df.columns\[1, 2\], axis = 1) #舍弃数据前两列
print df.drop(df.columns\[\[1, 2\]\], axis = 0) #舍弃数据前两行
#为了节省篇幅结果就不贴出来了哈~
print df.shape #打印维度
#输出
(244, 7)
df.iloc\[3\] #选取第3行
#输出1
total\_bill     23.68
tip             3.31
sex             Male
smoker            No
day              Sun
time          Dinner
size               2
Name: 3, dtype: object

df.iloc\[2:4\] #选取第2到第3行
#输出2
   total\_bill   tip   sex smoker  day    time  size
2       21.01  3.50  Male     No  Sun  Dinner     3
3       23.68  3.31  Male     No  Sun  Dinner     2

df.iloc\[0,1\] #选取第0行1列的元素
#输出3
1.01
(二)筛选出需要的数据(用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)
#example:假设我们要筛选出小费大于$8的数据
df\[df.tip>8\]
#输出
     total\_bill  tip   sex smoker  day    time  size
170       50.81   10  Male    Yes  Sat  Dinner     3
212       48.33    9  Male     No  Sat  Dinner     4
#数据筛选同样可以用”或“和”且“作为筛选条件,比如
#1
df\[(df.tip>7)|(df.total\_bill>50)\] #筛选出小费大于$7或总账单大于$50的数据
#输出
     total\_bill    tip   sex smoker  day    time  size
23        39.42   7.58  Male     No  Sat  Dinner     4
170       50.81  10.00  Male    Yes  Sat  Dinner     3
212       48.33   9.00  Male     No  Sat  Dinner     4

#2
df\[(df.tip>7)&(df.total\_bill>50)\]#筛选出小费大于$7且总账单大于$50的数据
#输出
     total\_bill  tip   sex smoker  day    time  size
170       50.81   10  Male    Yes  Sat  Dinner     3
#接上
#假如加入了筛选条件后,我们只关心day和time
df\[\['day','time'\]\]\[(df.tip>7)|(df.total\_bill>50)\]
#输出
     day    time
23   Sat  Dinner
170  Sat  Dinner
212  Sat  Dinner
  三.统计描述(用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)
print df.describe() #描述性统计
#输出  各指标都比较简单就不解释了哈
       total\_bill         tip        size
count  244.000000  244.000000  244.000000
mean    19.785943    2.998279    2.569672
std      8.902412    1.383638    0.951100
min      3.070000    1.000000    1.000000
25%     13.347500    2.000000    2.000000
50%     17.795000    2.900000    2.000000
75%     24.127500    3.562500    3.000000
max     50.810000   10.000000    6.000000

四.数据处理  
  
(一)数据转置(用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)
print df.T
#output
               0       1       2       3       4       5       6       7    \\
total\_bill   16.99   10.34   21.01   23.68   24.59   25.29    8.77   26.88   
tip           1.01    1.66     3.5    3.31    3.61    4.71       2    3.12   
sex         Female    Male    Male    Male  Female    Male    Male    Male   
smoker          No      No      No      No      No      No      No      No   
day            Sun     Sun     Sun     Sun     Sun     Sun     Sun     Sun   
time        Dinner  Dinner  Dinner  Dinner  Dinner  Dinner  Dinner  Dinner   
size             2       3       3       2       4       4       2       4   

               8       9     ...       234     235     236     237     238  \\
total\_bill   15.04   14.78   ...     15.53   10.07    12.6   32.83   35.83   
tip           1.96    3.23   ...         3    1.25       1    1.17    4.67   
sex           Male    Male   ...      Male    Male    Male    Male  Female   
smoker          No      No   ...       Yes      No     Yes     Yes      No   
day            Sun     Sun   ...       Sat     Sat     Sat     Sat     Sat   
time        Dinner  Dinner   ...    Dinner  Dinner  Dinner  Dinner  Dinner   
size             2       2   ...         2       2       2       2       3   

               239     240     241     242     243  
total\_bill   29.03   27.18   22.67   17.82   18.78  
tip           5.92       2       2    1.75       3  
sex           Male  Female    Male    Male  Female  
smoker          No     Yes     Yes      No      No  
day            Sat     Sat     Sat     Sat    Thur  
time        Dinner  Dinner  Dinner  Dinner  Dinner  
size             3       2       2       2       2  

\[7 rows x 244 columns\]

(二)数据排序(用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)

df.sort\_values(by='tip')  #按tip列升序排序
#输出(为了不占篇幅我简化了一部分)
     total\_bill    tip     sex smoker   day    time  size
67         3.07   1.00  Female    Yes   Sat  Dinner     1
236       12.60   1.00    Male    Yes   Sat  Dinner     2
92         5.75   1.00  Female    Yes   Fri  Dinner     2
111        7.25   1.00  Female     No   Sat  Dinner     1
0         16.99   1.01  Female     No   Sun  Dinner     2
..          ...    ...     ...    ...   ...     ...   ...
214       28.17   6.50  Female    Yes   Sat  Dinner     3
141       34.30   6.70    Male     No  Thur   Lunch     6
59        48.27   6.73    Male     No   Sat  Dinner     4
23        39.42   7.58    Male     No   Sat  Dinner     4
212       48.33   9.00    Male     No   Sat  Dinner     4
170       50.81  10.00    Male    Yes   Sat  Dinner     3

\[244 rows x 7 columns\]
(三)缺失值处理  
  
1.填充缺失值(数据来自《利用python进行数据分析》第二章 usagov\_bitly\_data2012-03-16-1331923249.txt,需要的同学可以找我要)  
  

import json  #python有许多内置或第三方模块可以将JSON字符串转换成python字典对象
import pandas as pd
import numpy as np
from pandas import DataFrame
path \= 'F:\\PycharmProjects\\pydata-book-master\\ch02\\usagov\_bitly\_data2012-03-16-1331923249.txt' #根据自己的路径填写
records = \[json.loads(line) for line in open(path)\]
frame \= DataFrame(records)
frame\['tz'\]

#输出(为了节省篇幅我删除了部分输出结果)
0          America/New\_York
1            America/Denver
2          America/New\_York
3         America/Sao\_Paulo
4          America/New\_York
5          America/New\_York
6             Europe/Warsaw
7                          
8                          
9                          
10      America/Los\_Angeles
11         America/New\_York
12         America/New\_York
13                      NaN
               ...         
Name: tz, dtype: object

从以上输出值可以看出数据存在未知或缺失值,接着咱们来处理缺失值。

print frame\['tz'\].fillna(1111111111111)  #以数字代替缺失值
#输出结果(为了节省篇幅我删除了部分输出结果)
0          America/New\_York
1            America/Denver
2          America/New\_York
3         America/Sao\_Paulo
4          America/New\_York
5          America/New\_York
6             Europe/Warsaw
7                          
8                          
9                          
10      America/Los\_Angeles
11         America/New\_York
12         America/New\_York
13            1111111111111
Name: tz, dtype: object
print frame\['tz'\].fillna('YuJie2333333333333') #用字符串代替缺失值
#输出(为了节省篇幅我删除了部分输出结果)
0          America/New\_York
1            America/Denver
2          America/New\_York
3         America/Sao\_Paulo
4          America/New\_York
5          America/New\_York
6             Europe/Warsaw
7                          
8                          
9                          
10      America/Los\_Angeles
11         America/New\_York
12         America/New\_York
13       YuJie2333333333333
Name: tz, dtype: object

还有:

print frame\['tz'\].fillna(method='pad') #用前一个数据代替缺失值
print frame\['tz'\].fillna(method='bfill') #用后一个数据代替缺失值

2.删除缺失值 (数据同上)

print frame\['tz'\].dropna(axis=0) #删除缺失行
print frame\['tz'\].dropna(axis=1) #删除缺失列

3.插值法填补缺失值

由于没有数据,这儿插播一个小知识点:创建一个随机的数据框

import pandas as pd
import numpy as np
#创建一个6\*4的数据框,randn函数用于创建随机数
czf\_data = pd.DataFrame(np.random.randn(6,4),columns=list('ABCD')) 
czf\_data
#输出
          A         B         C         D
0  0.355690  1.165004  0.810392 -0.818982
1  0.496757 -0.490954 -0.407960 -0.493502
2 -0.202123 -0.842278 -0.948464  0.223771
3  0.969445  1.357910 -0.479598 -1.199428
4  0.125290  0.943056 -0.082404 -0.363640
5 -1.762905 -1.471447  0.351570 -1.546152

好啦,数据就出来了。接着我们用空值替换数值,创造出一个含有空值的DataFrame。

#把第二列数据设置为缺失值
czf\_data.ix\[2,:\]=np.nan
czf\_data
#输出
          A         B         C         D
0  0.355690  1.165004  0.810392 -0.818982
1  0.496757 -0.490954 -0.407960 -0.493502
2       NaN       NaN       NaN       NaN
3  0.969445  1.357910 -0.479598 -1.199428
4  0.125290  0.943056 -0.082404 -0.363640
5 -1.762905 -1.471447  0.351570 -1.546152
#接着就可以利用插值法填补空缺值了~
print czf\_data.interpolate()
#输出
          A         B         C         D
0  0.355690  1.165004  0.810392 -0.818982
1  0.496757 -0.490954 -0.407960 -0.493502
2  0.733101  0.433478 -0.443779 -0.846465
3  0.969445  1.357910 -0.479598 -1.199428
4  0.125290  0.943056 -0.082404 -0.363640
5 -1.762905 -1.471447  0.351570 -1.546152

(四)数据分组(用的是tips.csv的数据,数据来源:https://github.com/mwaskom/seaborn-data)

group = df.groupby('day')  #按day这一列进行分组
#1
print group.first()#打印每一组的第一行数据
#输出
      total\_bill   tip     sex smoker    time  size
day                                                
Fri        28.97  3.00    Male    Yes  Dinner     2
Sat        20.65  3.35    Male     No  Dinner     3
Sun        16.99  1.01  Female     No  Dinner     2
Thur       27.20  4.00    Male     No   Lunch     4
#2
print group.last()#打印每一组的最后一行数据
#输出
      total\_bill   tip     sex smoker    time  size
day                                                
Fri        10.09  2.00  Female    Yes   Lunch     2
Sat        17.82  1.75    Male     No  Dinner     2
Sun        15.69  1.50    Male    Yes  Dinner     2
Thur       18.78  3.00  Female     No  Dinner     2

(五)值替换

import pandas as pd
import numpy as np
#首先创造一个Series(没有数据情况下的福音233)
Series = pd.Series(\[0,1,2,3,4,5\])
#输出
Series
0    0
1    1
2    2
3    3
4    4
5    5
dtype: int64
#数值替换,例如将0换成10000000000000
print Series.replace(0,10000000000000)
#输出
0    10000000000000
1                 1
2                 2
3                 3
4                 4
5                 5
dtype: int64
#列和列的替换同理
print Series.replace(\[0,1,2,3,4,5\],\[11111,222222,3333333,44444,55555,666666\])
#输出
0      11111
1     222222
2    3333333
3      44444
4      55555
5     666666
dtype: int64

五.统计分析

(一)t检验

1.独立样本t检验

两独立样本t检验就是根据样本数据对两个样本来自的两独立总体的均值是否有显著差异进行推断;进行两独立样本t检验的条件是,两样本的总体相互独立且符合正态分布。

开始找不到合适的数据,我就在网上随便摘抄了个spss做独立样本t检验的实例数据作为例子大家暂时看着吧找到合适的例子再给大家举~

数据如下,我将数据保存为本地xlsx格式:

   group  data
0      1    34
1      1    37
2      1    28
3      1    36
4      1    30
5      2    43
6      2    45
7      2    47
8      2    49
9      2    39
import pandas as pd
from scipy.stats import ttest\_ind
IS\_t\_test \= pd.read\_excel('E:\\\\IS\_t\_test.xlsx') 
Group1 \= IS\_t\_test\[IS\_t\_test\['group'\]==1\]\['data'\]
Group2 \= IS\_t\_test\[IS\_t\_test\['group'\]==2\]\['data'\]
print ttest\_ind(Group1,Group2)

#输出
(-4.7515451390104353, 0.0014423819408438474) 

输出结果的第一个元素为t值,第二个元素为p-value

ttest_ind默认两组数据方差齐性的,如果想要设置默认方差不齐,可以设置equal_var=False

print ttest\_ind(Group1,Group2,equal\_var=True)
print ttest\_ind(Group1,Group2,equal\_var=False)
#输出
(-4.7515451390104353, 0.0014423819408438474)
(\-4.7515451390104353, 0.0014425608643614844)

2.配对样本t检验

同样找不到数据,让我们暂且假设上边独立样本是配对样本吧,使用同样的数据。

import pandas as pd
from scipy.stats import ttest\_rel
IS\_t\_test \= pd.read\_excel('E:\\\\IS\_t\_test.xlsx') 
Group1 \= IS\_t\_test\[IS\_t\_test\['group'\]==1\]\['data'\]
Group2 \= IS\_t\_test\[IS\_t\_test\['group'\]==2\]\['data'\]
print ttest\_rel(Group1,Group2)

#输出
(-5.6873679190073361, 0.00471961872448184)

同样的,输出结果的第一个元素为t值,第二个元素为p-value。

(二)方差分析

1.单因素方差分析

这里依然沿用t检验的数据

import pandas as pd
from scipy import stats
IS\_t\_test \= pd.read\_excel('E:\\\\IS\_t\_test.xlsx') 
Group1 \= IS\_t\_test\[IS\_t\_test\['group'\]==1\]\['data'\]
Group2 \= IS\_t\_test\[IS\_t\_test\['group'\]==2\]\['data'\]
w,p \= stats.levene(\*args)
#levene方差齐性检验。levene(\*args, \*\*kwds)  Perform Levene test for equal variances.如果p<0.05,则方差不齐
print w,p
#进行方差分析
f,p = stats.f\_oneway(\*args)
print f,p

#输出
(0.019607843137254936, 0.89209916055865535)
22.5771812081 0.00144238194084

2.多因素方差分析

数据是我从网上找的多因素方差分析的一个例子,研究区组和营养素对体重的影响。我做成了excel文件,需要的同学可以问我要哈~做多因素方差分析需要加载statsmodels模块,如果电脑没有安装可以pip install一下。
#数据导入
import pandas as pd
MANOVA\=pd.read\_excel('E:\\\\MANOVA.xlsx')
MANOVA
#输出(为了节省篇幅删掉了中间部分的输出结果)  
    id  nutrient  weight
0    1         1    50.1
1    2         1    47.8
2    3         1    53.1
3    4         1    63.5
4    5         1    71.2
5    6         1    41.4
.......................
21   6         3    38.5
22   7         3    51.2
23   8         3    46.2
#多因素方差分析
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova\_lm
formula \= 'weight~C(id)+C(nutrient)+C(id):C(nutrient)'
anova\_results \= anova\_lm(ols(formula,MANOVA).fit())
print anova\_results
#output
                   df        sum\_sq     mean\_sq   F  PR(>F)
C(id)               7  2.373613e+03  339.087619   0     NaN
C(nutrient)         2  1.456133e+02   72.806667   0     NaN
C(id):C(nutrient)  14  3.391667e+02   24.226190   0     NaN
Residual            0  8.077936e-27         inf NaN     NaN

也许数据选得不对,p-value全是空值23333,待我找个好点儿的数据再做一次多因素方差分析。

3.重复测量设计的方差分析(单因素) ********待完善

重复测量设计是对同一因变量进行重复测度,重复测量设计的方差分析可以是同一条件下进行的重复测度,也可以是不同条件下的重复测量。

代码和多因素方差分析一样,思路不一样而已~但我还找不到多因素方差分析合适的数据所以这儿就先不写了2333

4.混合设计的方差分析 ********待完善

#########统计学学得好的同学们,教教我吧。。

(三)卡方检验

卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。(from 百度百科2333)

1.单因素卡方检验

数据源于网络,男女化妆与不化妆人数的理论值与实际值。

import numpy as np
from scipy import stats
from scipy.stats import chisquare
observed \= np.array(\[15,95\])
 #观测值:110学生中化妆的女生95人,化妆的男生15人
expected = np.array(\[55,55\])
#理论值:110学生中化妆的女生55人,化妆的男生55人
chisquare(observed,expected)
#output
(58.18181818181818, 2.389775628860044e-14)

2.多因素卡方检验*****正在研究中,学会了完善这一块~

(四)计数统计(用的数据为tips.csv)

#example:统计性别
count = df\['sex'\].value\_counts()
#输出
print count
Male      157
Female     87
Name: sex, dtype: int64

(五)回归分析 *****待学习: 数据拟合,广义线性回归。。。。等等

六.可视化

我觉得吧,其实看着excel就可以实现的功能为何那么复杂,excel确实够通用够便捷,但是处理很大数据量的话也许吃不消吧。学学python绘图也不赖,而且讲真,有的成效真的挺好看的。

(一)Seaborn

我学数据分析可视化是从学习Seaborn入门的,Seaborn是基于matplotlib的Python可视化库,刚开始便接触matplotlib难免有些吃力,参数多且难理解,但是慢慢来总会学会的。还有关键的一点是,seaborn画出来的图好好看。。
#基础导入
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
#小费数据真的挺好的,这儿用tips作为example
tips = sns.load\_dataset('tips') #从网络环境导入数据tips  

1.lmplot函数

lmplot(x, y, data, hue=None, col=None, row=None, palette=None, col_wrap=None, size=5, aspect=1, markers=‘o’, sharex=True, sharey=True, hue_order=None, col_order=None, row_order=None, legend=True, legend_out=True, x_estimator=None, x_bins=None, x_ci=‘ci’, scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, x_jitter=None, y_jitter=None, scatter_kws=None, line_kws=None)

功能:Plot data and regression model fits across a FacetGrid.

下面就不同的例子,对lmplot的参数进行解释

例子1. 画出总账单和小费回归关系图

用到了lmplot(x, y, data,scatter_kws)

x,y,data一目了然这儿就不多解释了,scatter_kws和line_kws的官方解释如下:

{scatter,line}_kws : dictionarie

Additional keyword arguments to pass to plt.scatter and plt.plot.

scatter为点,line为线。其实就是用字典去限定点和线的各种属性,如例子所示,散点的颜色为灰石色,线条的颜色为印度红,成像效果就是这样点线颜色分离,展现效果很好。大家也可以换上自己想要的图片属性。

sns.lmplot("total\_bill", "tip", tips,
           scatter\_kws={"marker": ".", "color": "slategray"},
           line\_kws={"linewidth": 1, "color": "indianred"}).savefig('picture2') 

另外:颜色还可以使用RGB代码,具体对照表可以参考这个网站,可以自己搭配颜色:

http://www.114la.com/other/rgb.htm

marker也可以有多种样式,具体如下:

. Point marker
, Pixel marker
o Circle marker
v Triangle down marker
^ Triangle up marker
< Triangle left marker
> Triangle right marker
1 Tripod down marker
2 Tripod up marker
3 Tripod left marker
4 Tripod right marker
s Square marker
p Pentagon marker
* Star marker
h Hexagon marker
H Rotated hexagon D Diamond marker
d Thin diamond marker
| Vertical line (vlinesymbol) marker
_ Horizontal line (hline symbol) marker

  • Plus marker
    x Cross (x) marker
sns.lmplot("total\_bill", "tip", tips,
           scatter\_kws\={"marker": ".","color":"#FF7F00"},
           line\_kws\={"linewidth": 1, "color": "#BF3EFF"}).savefig('s1')  
  
ps.我修改maker属性不成功不知为何,求解答

例子2.用餐人数(size)和小费(tip)的关系图

官方解释:

x_estimator : callable that maps vector -> scalar, optional

Apply this function to each unique value of x and plot the resulting estimate. This is useful when x is a discrete variable. If x_ci is not None, this estimate will be bootstrapped and a confidence interval will be drawn.

大概解释就是:对拥有相同x水平的y值进行映射

plt.figure()
sns.lmplot('size', 'tip', tips, x\_estimator= np.mean).savefig('picture3')

{x,y}_jitter : floats, optional

Add uniform random noise of this size to either the x or y variables. The noise is added to a copy of the data after fitting the regression, and only influences the look of the scatterplot. This can be helpful when plotting variables that take discrete values.

jitter是个很有意思的参数, 特别是处理靶数据的overlapping过于严重的情况时, 通过增加一定程度的噪声(noise)实现数据的区隔化, 这样原始数据是若干 点簇 变成一系列密集邻近的点群. 另外, 有的人会经常将 rugjitter 结合使用. 这依人吧.对于横轴取离散水平的时候, 用x_jitter可以让数据点发生水平的扰动.但扰动的幅度不宜过大。

sns.lmplot('size', 'tip', tips, x\_jitter=.15).savefig('picture4')

seaborn还可以做出xkcd风格的图片,还挺有意思的

with plt.xkcd():
    sns.color\_palette('husl', 8)
    sns.set\_context('paper')
    sns.lmplot(x\='total\_bill', y='tip', data=tips, ci=65).savefig('picture1')

with plt.xkcd():
    sns.lmplot('total\_bill', 'tip', data=tips, hue='day')
    plt.xlabel('hue = day')
    plt.savefig('picture5')

with plt.xkcd():
    sns.lmplot('total\_bill', 'tip', data=tips, hue='smoker')
    plt.xlabel('hue = smoker')
    plt.savefig('picture6')

sns.set\_style('dark')
sns.set\_context('talk')
sns.lmplot('size', 'total\_bill', tips, order=2)
plt.title('\# poly order = 2')
plt.savefig('picture7')
plt.figure()
sns.lmplot('size', 'total\_bill', tips, order=3)
plt.title('\# poly order = 3')
plt.savefig('picture8')
sns.jointplot("total\_bill", "tip", tips).savefig('picture9')

需要更多学习籽料和项目实战源码请扫下方👇↓↓↓获取!!!

在这里插入图片描述

如有侵权,请联系删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/771699.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】—— 文件操作(下)

【C语言】—— 文件操作&#xff08;下&#xff09; 前言&#xff1a;五、文件的顺序读写5.1、 顺序读写函数介绍5.2、 f p u t c fputc fputc 函数5.3、 f g e t c fgetc fgetc 函数5.4、 f p u t s fputs fputs 函数5.5、 f g e t s fgets fgets 函数5.6、 f p r i n t f…

html+css+js淘宝商品界面

点击商品&#xff0c;alert弹出商品ID 图片使用了占位符图片&#xff0c;加载可能会慢一点 你可以把它换成自己的图片&#x1f603;源代码在图片后面 效果图 源代码 <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"…

Word “当前页“ 与 “前一页“ (含部分内容)间有大半页空白,删除空白方法

鼠标光标选中需要向上移的句子&#xff0c;右键点击“段落”&#xff0c;然后在跳出的窗口中按照“换行和分页”中的红色方框内取消勾选后&#xff0c;点击确定即可。

金斗云 HKMP智慧商业软件 任意用户创建漏洞复现

0x01 产品简介 金斗云智慧商业软件是一款功能强大、易于使用的智慧管理系统,通过智能化的管理工具,帮助企业实现高效经营、优化流程、降低成本,并提升客户体验。无论是珠宝门店、4S店还是其他零售、服务行业,金斗云都能提供量身定制的解决方案,助力企业实现数字化转型和智…

Proteus-51单片机-DS18B20多点测温

DS18B20多点测温 一、Proteus仿真演示 每个DS18B20都有一个唯一的64位序列号,这使得在同一总线上可以挂载多个传感器,无需额外的地址分配。主机(通常为单片机)通过特定的时序控制,可以依次读取各个DS18B20的温度数据,实现分布式测温。 二、代码特点 三、开发环境介绍 本…

【unity实战】使用unity的新输入系统InputSystem+有限状态机设计一个玩家状态机控制——实现玩家的待机 移动 闪避 连击 受击 死亡状态切换

最终效果 文章目录 最终效果前言人物素材新输入系统InputSystem的配置动画配置代码文件路径状态机脚本创建玩家不同的状态脚本玩家控制源码完结 前言 前面我们已经写过了使用有限状态机制作一个敌人AI&#xff1a;【unity实战】在Unity中使用有限状态机制作一个敌人AI 那么玩…

收银系统源码分享-PHP可二开

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 私有化独立…

面向对象-封装

一.包 1.简介 当我们把所有的java类都写src下的第一层级&#xff0c;如果是项目中&#xff0c;也许会有几百个java文件。 src下的文件会很多&#xff0c;开发的时候不方便查找&#xff0c;也不方便维护如果较多的文件中有同名的&#xff0c;十分麻烦 模块1中有一个叫test.ja…

Nuxtjs3教程

起步 官方文档 官方目录结构 安装 npx nuxi@latest init <project-name>后面跟着提示走就行 最后yarn run dev 启动项目访问localhost:3000即可 路由组件 app.vue为项目根组件 <nuxt-page />为路由显示入口 将app.vue更改内容如下 <template><d…

WPS中制作甘特图的详细教程

网上没几个详细说怎么在WPS中制作甘特图的&#xff0c;我自己整理了一下详细教程&#xff0c;最终效果如下图所示&#xff1a; 1.写好需要展示的项目相关信息&#xff0c;如下图所示&#xff1a; #####这个进度的百分比渐变效果这样设置就行了 2.现在我们需要计算已用时间和剩…

lodash中flush的使用(debounce、throttle)

在项目的配置中&#xff0c;看到了一个请求&#xff0c;类似是这样的 import { throttle } from lodash-es// 请求函数 async function someFetch(){const {data} await xxx.post()return data }// 节流函数 async function throttleFn(someFetch,1000)// 执行拿到数据函数 a…

Zabbix 配置MySQL数据库监控

Zabbix MySQL数据库监控简介 通过 Zabbix 监控 MySQL 数据库&#xff0c;可以获取有关数据库性能、运行状况和资源使用情况的详细信息&#xff0c;帮助及时发现和解决问题。 Zabbix官方提供了一个名为MySQL by Zabbix agent的监控模板&#xff0c;该模板专为 Zabbix 通过 Zabb…

Java中的文件IO

文件,我们之前在C语言中接触过,是在硬盘上存储数据的方式,操作系统帮我们把硬盘的一些细节都封装起来了,因此在这里我们只需要了解文件的相关接口即可. 首先硬盘是用来存储数据的,和内存相比,硬盘的存储空间更大,访问速度更慢,成本更低,可以实现持久化存储,而操作系统通过&quo…

Polkadot 安全机制揭秘:保障多链生态的互操作性与安全性

作者&#xff1a;Filippo Franchini&#xff0c;Web3 Foundation 原文&#xff1a;https://x.com/filippoweb3/status/1806318265536242146 编译&#xff1a;OneBlock Polkadot 是一个创新的多链区块链平台&#xff0c;旨在实现不同区块链之间的互操作性和共享安全性。本文将详…

c++习题02-浮点数求余

目录 一&#xff0c;问题 二&#xff0c;思路 三&#xff0c;代码 一&#xff0c;问题 二&#xff0c;思路 虽然在浮点类型中没有取余的运算&#xff08;无法直接使用%符号取余&#xff09;&#xff0c;但是我们都知道在数学中&#xff0c;除法是减法的连续运算&#xff…

软件测试最全面试题及答案整理(2024最新版)

1、你的测试职业发展是什么? 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师奔去。而且我也有初步的职业规划&#xff0c;前3年积累测试经验&#xff0c;按如何做好测试工程师的要点去要求自己&#xff0c;不断…

师从IEEE fellow|博士后加拿大阿尔伯塔大学成行

V老师指定申请加拿大&#xff0c;优先对方出资的博士后&#xff0c;如果外方无资助&#xff0c;也可以自筹经费&#xff0c;但要求必须是博士后头衔。最终我们为其落实了加拿大阿尔伯塔大学的postdoctoral fellow&#xff08;博士后研究员&#xff09;&#xff0c;尽管是无薪职…

经典链表算法题:找到环的入口。清晰图示推导出来

Leetcode题目链接 原理 重画链表如下所示&#xff0c;线上有若干个节点。记蓝色慢指针为 slow&#xff0c;红色快指针为 fast。初始时 slow 和 fast 均在头节点处。 使 slow 和 fast 同时前进&#xff0c;fast 的速度是 slow 的两倍。当 slow 抵达环的入口处时&#xff0c;如…

前端播放RTSP视频流,使用FLV请求RTSP视频流播放(Vue项目,在Vue中使用插件flv.js请求RTSP视频流播放)

简述&#xff1a;在浏览器中请求 RTSP 视频流并进行播放时&#xff0c;直接使用原生的浏览器 API 是行不通的&#xff0c;因为它们不支持 RTSP 协议。为了解决这个问题&#xff0c;开发者通常会选择使用像 flv.js 这样的库&#xff0c;它专为在浏览器中播放 FLV 和其他流媒体格…

4款引以为豪的办公软件,使用起来,舒适度满满

Everything 是Windows神级搜索软件&#xff0c;能做到秒级响应。 Everything 之前小编在文章里提过好几次&#xff0c;但还有很多小伙伴不知道&#xff0c;那就再给大家种草一下哈。 只需要打开一次&#xff0c;Everything就会自动为你的文件建立索引&#xff0c;之后&#…