昇思25天学习打卡营第13天|ResNet50图像分类

1. 学习内容复盘

图像分类是最基础的计算机视觉应用,属于有监督学习类别,如给定一张图像(猫、狗、飞机、汽车等等),判断图像所属的类别。本章将介绍使用ResNet50网络对CIFAR-10数据集进行分类。

ResNet网络介绍

ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。

ResNet网络提出了残差网络结构(Residual Network)来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。论文中使用ResNet网络在CIFAR-10数据集上的训练误差与测试误差图如下图所示,图中虚线表示训练误差,实线表示测试误差。由图中数据可以看出,ResNet网络层数越深,其训练误差和测试误差越小。

了解ResNet网络更多详细内容,参见ResNet论文

数据集准备与加载

CIFAR-10数据集共有6000032*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片。首先,如下示例使用download接口下载并解压,目前仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)。

构建网络

残差网络结构(Residual Network)ResNet网络的主要亮点,ResNet使用残差网络结构后可有效地减轻退化问题,实现更深的网络结构设计,提高网络的训练精度。本节首先讲述如何构建残差网络结构,然后通过堆叠残差网络来构建ResNet50网络。

构建残差网络结构

残差网络结构图如下图所示,残差网络由两个分支构成:一个主分支,一个shortcuts(图中弧线表示)。主分支通过堆叠一系列的卷积操作得到,shotcuts从输入直接到输出,主分支输出的特征矩阵F(x)加上shortcuts输出的特征矩阵x得到F(x)+x,通过Relu激活函数后即为残差网络最后的输出。

残差网络结构主要由两种,一种是Building Block,适用于较浅的ResNet网络,如ResNet18ResNet34;另一种是Bottleneck,适用于层数较深的ResNet网络,如ResNet50ResNet101ResNet152

Building Block

Building Block结构图如下图所示,主分支有两层卷积网络结构:

  • 主分支第一层网络以输入channel64为例,首先通过一个3×33×3的卷积层,然后通过Batch Normalization层,最后通过Relu激活函数层,输出channel64
  • 主分支第二层网络的输入channel64,首先通过一个3×33×3的卷积层,然后通过Batch Normalization层,输出channel64

最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Building Block最后的输出。

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为1×11×1的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride2,主分支第一层卷积操作的stride也需设置为2

Bottleneck

Bottleneck结构图如下图所示,在输入相同的情况下Bottleneck结构相对Building Block结构的参数数量更少,更适合层数较深的网络,ResNet50使用的残差结构就是Bottleneck。该结构的主分支有三层卷积结构,分别为1×11×1的卷积层、3×33×3卷积层和1×11×1的卷积层,其中1×11×1的卷积层分别起降维和升维的作用。

  • 主分支第一层网络以输入channel256为例,首先通过数量为64,大小为1×11×1的卷积核进行降维,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel64
  • 主分支第二层网络通过数量为64,大小为3×33×3的卷积核提取特征,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel64
  • 主分支第三层通过数量为256,大小1×11×1的卷积核进行升维,然后通过Batch Normalization层,其输出channel256

最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Bottleneck最后的输出。

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为1×11×1的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride2,主分支第二层卷积操作的stride也需设置为2

构建ResNet50网络

ResNet网络层结构如下图所示,以输入彩色图像224×224224×224为例,首先通过数量64,卷积核大小为7×77×7stride2的卷积层conv1,该层输出图片大小为112×112112×112,输出channel64;然后通过一个3×33×3的最大下采样池化层,该层输出图片大小为56×5656×56,输出channel64;再堆叠4个残差网络块(conv2_xconv3_xconv4_xconv5_x),此时输出图片大小为7×77×7,输出channel2048;最后通过一个平均池化层、全连接层和softmax,得到分类概率。

对于每个残差网络块,以ResNet50网络中的conv2_x为例,其由3Bottleneck结构堆叠而成,每个Bottleneck输入的channel64,输出channel256

如下示例定义make_layer实现残差块的构建,其参数如下所示:

  • last_out_channel:上一个残差网络输出的通道数。
  • block:残差网络的类别,分别为ResidualBlockBaseResidualBlock
  • channel:残差网络输入的通道数。
  • block_nums:残差网络块堆叠的个数。
  • stride:卷积移动的步幅。

ResNet50网络共有5个卷积结构,一个平均池化层,一个全连接层,以CIFAR-10数据集为例:

  • conv1:输入图片大小为32×3232×32,输入channel3。首先经过一个卷积核数量为64,卷积核大小为7×77×7stride2的卷积层;然后通过一个Batch Normalization层;最后通过Reul激活函数。该层输出feature map大小为16×1616×16,输出channel64
  • conv2_x:输入feature map大小为16×1616×16,输入channel64。首先经过一个卷积核大小为3×33×3stride2的最大下采样池化操作;然后堆叠3[1×1643×3641×1256][1×1643×3641×1256]结构的Bottleneck。该层输出feature map大小为8×88×8,输出channel256
  • conv3_x:输入feature map大小为8×88×8,输入channel256。该层堆叠4[1×11283×31281×1512]结构的Bottleneck。该层输出feature map大小为4×44×4,输出channel512
  • conv4_x:输入feature map大小为4×44×4,输入channel512。该层堆叠6[1×12563×32561×11024]结构的Bottleneck。该层输出feature map大小为2×22×2,输出channel1024
  • conv5_x:输入feature map大小为2×22×2,输入channel1024。该层堆叠3[1×15123×35121×12048]结构的Bottleneck。该层输出feature map大小为1×11×1,输出channel2048
  • average pool & fc:输入channel2048,输出channel为分类的类别数。

如下示例代码实现ResNet50模型的构建,通过用调函数resnet50即可构建ResNet50模型,函数resnet50参数如下:

  • num_classes:分类的类别数,默认类别数为1000
  • pretrained:下载对应的训练模型,并加载预训练模型中的参数到网络中。

模型训练与评估

本节使用ResNet50预训练模型进行微调。调用resnet50构造ResNet50模型,并设置pretrained参数为True,将会自动下载ResNet50预训练模型,并加载预训练模型中的参数到网络中。然后定义优化器和损失函数,逐个epoch打印训练的损失值和评估精度,并保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的./BestCheckPoint下。

由于预训练模型全连接层(fc)的输出大小(对应参数num_classes)为1000 为了成功加载预训练权重,我们将模型的全连接输出大小设置为默认的1000CIFAR10数据集共有10个分类,在使用该数据集进行训练时,需要将加载好预训练权重的模型全连接层输出大小重置为10

此处我们展示了5epochs的训练过程,如果想要达到理想的训练效果,建议训练80epochs

可视化模型预测

定义visualize_model函数,使用上述验证精度最高的模型对CIFAR-10测试数据集进行预测,并将预测结果可视化。若预测字体颜色为蓝色表示为预测正确,预测字体颜色为红色则表示预测错误。

由上面的结果可知,5epochs下模型在验证数据集的预测准确率在70%左右,即一般情况下,6张图片中会有2张预测失败。如果想要达到理想的训练效果,建议训练80epochs

2.平台实验结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/769217.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux应用---内存映射

写在前面: 在进程间通信中,有一种方式内存映射。内存映射也是进程间通信的方式之一,其效率高,可以直接对内存进行操作。本节我们对内存映射进行学习,并结合案例进行实践。 1、基本理论 内存映射:是将磁盘文…

ODN网络弱光聚类定界与整治

01 ODN网络弱光运维现状 ODN网络是家庭宽带连接系统-无源光网络 (PON) 的重要组成部分,是连接局端 OLT 和用户 ONT 之间的光路通道,其质量直接影响整个PON系统的性能及可靠性。ODN光纤链路包括OLT PON口、ODF、主干光纤、一级分光器、分支光纤、二级分光…

登录功能和校验

基础版 controller package com.web.management.controller;import com.web.management.pojo.Emp; import com.web.management.pojo.Result; import com.web.management.service.EmpService; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.anno…

如何用Vue3和Plotly.js绘制交互式漏斗图

本文由ScriptEcho平台提供技术支持 项目地址:传送门 Plotly.js 绘制漏斗图 应用场景 漏斗图常用于可视化业务流程中的各个阶段的转换率,例如销售漏斗或营销漏斗。它可以帮助用户识别流程中的瓶颈和改进机会。 基本功能 本代码使用 Plotly.js 库绘制…

【微机原理及接口技术】中断控制器8259A

【微机原理及接口技术】中断控制器8259A 文章目录 【微机原理及接口技术】中断控制器8259A前言一、介绍二、8259A的内部结构和引脚三、8259A的中断工作过程四、8259A的工作方式五、8259A的编程六、外部中断服务程序总结 前言 本篇文章将就8259芯片展开介绍,8259A的…

【多媒体】富客户端应用程序GUI框架 JavaFX 2.0 简介

JavaFX 最初是由 Oracle 推出的一个用于开发富客户端应用程序的框架,它提供了丰富的用户界面控件、布局容器、3D图形绘制、媒体播放和动画等功能,旨在取代较旧的 Swing 框架。JavaFX 于 2007 年推出,2011 年 10 月发布了2.0 版本。JavaFX 2.0…

OpenLayers使用

初学ol,实现了高德地图不同图层的切换、交互性地图飞行以及加载本地JSON数据。 说一下不同图层切换的想法: 1.对于标准地图和卫星地图:二者最初便挂载到map上,两个图层是叠加显示的;当点击按钮时,其实是使…

VSCode里python代码不扩展/级联了的解决办法

如图 解决办法:重新下载新的扩展工具 步骤如下 1、在左边工具栏打开Extensions 2、搜索框输入python,选择别的扩展工具,点击Install - 3在扩展工具所在的目录下,新建一个文件,就可以用了

指定IP地址通过远程桌面访问WINDOWS10

1:登录Windows10系统,在控制面板找到系统和安全,打开Windows Defender防火墙。 2:点击感觉设置。 3:在入站规则中,找到远程桌面。查看自己的网络现在是公用,域,还是专用。选择对应的网络。 4&am…

Oracle EBS PO采购订单预审批状态处理

系统版本 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状: 采购订单状态:预审批 采购订单流程报错如下: po.plsql.PO_DOCUMENT_ACTION_AUTH.approve:90:archive_po not successful - po.plsql.PO_DOCUMENT_ACTION_PVT.do_action:110:unexpected error in acti…

js生成器,迭代器和可迭代对象详解

1.生成器函数和生成器 生成器函数是可以返回一个可迭代对象的特殊函数, 生成器是一个特殊的迭代器, 在js中可以使用function*来定义一个非连续执行的函数作为迭代算法, function* name() {yield value;yield value;yield value; }name: 函…

基于YOLOv5的人脸目标检测

本文是在之前的基于yolov5的人脸关键点检测项目上扩展来的。因为人脸目标检测的效果将直接影响到人脸关键点检测的效果,因此本文主要讲解利用yolov5训练人脸目标检测(关键点检测可以看我人脸关键点检测文章) 基于yolov5的人脸关键点检测:人脸关键点检测…

ROS学习笔记(18):建图与定位(2)

0.前言 上文提到现在的我们已经进入到了SLAM领域的学习,会涉及到大量专业知识,作为一个自学的大三(好吧也快大四了)萌新并不能保证每次文章的专业性和准确性,所以,本人推荐大家能自己去查阅一些相关书籍和…

TOB传输、承载网拓扑图

1、用户面:GNODEB>UPE>SPE>NPE>UPF>CMNET网 2、控制面:GNODEB>UPE>SPE>NPE>IP承载网>核心网

充分利用智慧校园人事系统,提升党政职务管理

智慧校园人事系统中的党政职务管理功能,是专为高校及教育机构设计的,旨在高效、精确地处理与党政职务相关的各类事务,包括职务任命、任期管理、职责分配、考核评估等,以信息化手段促进党务及行政工作的透明化、规范化。 该模块首先…

redis主从复制哨兵模式集群管理

主从复制: 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡&…

像学Excel 一样学 Pandas系列-创建数据分析维度

嗨,小伙伴们。又到喜闻乐见的Python 数据分析王牌库 Pandas 的学习时间。按照数据分析处理过程,这次轮到了新增维度的部分了。 老样子,我们先来回忆一下,一个完整数据分析的过程,包含哪些部分内容。 其中&#xff0c…

好久不见!写了一个自动截图神器~【附源码】

文章目录 前言新增功能介绍截图功能快捷键设置 程序设计和使用介绍操作菜单栏选择点击坐标点选择图片选择截图区域快捷键设置 表格循环次数状态栏 使用案例源代码 前言 好久没更新文章了。上一次更新是在4月16日差不多,也只是写了一个错误集,没什么太多…

【Python机器学习】模型评估与改进——在模型选择中使用评估指标

我们通常希望,在使用GridSearchCV或cross_val_score进行模型选择时能够使用AUC等指标。scikit-learn提供了一种非常简单的实现方法,那就是scoring参数,它可以同时用于GridSearchCV和cross_val_score。你只需要提供一个字符串,用于…

基于Vue的MOBA类游戏攻略分享平台

你好呀,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言:Java 数据库:MySQL 技术:Java技术、SpringBoot框架、B/S模式、Vue.js 工具:MyEclipse、MySQL 系统展示 首页 用…