目录
- 0 专栏介绍
- 1 模型预测控制原理
- 2 差速模型运动学
- 3 基于差速模型的MPC控制
- 4 仿真实现
- 4.1 ROS C++实现
- 4.2 Python实现
- 4.3 Matlab实现
0 专栏介绍
🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。
🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法
1 模型预测控制原理
模型预测控制(Model Predictive Control,MPC)是一种先进的控制策略,广泛应用于工程领域。它通过建立动态系统的数学模型,并基于当前状态进行预测,优化未来一段时间内的控制动作,以达到最优的控制效果。模型预测控制通过预测和优化方法,能够在系统动态变化和约束条件下,实现更高效、更灵活的控制,因此在工业应用中具有重要的实际价值。
形式化地,以下图阐述模型预测控制原理。不计较模型形式,以状态空间模型为例
{ x ( k + 1 ) = f ( x ( k ) , u ( k ) ) , x ( 0 ) = x 0 y ( k ) = h ( x ( k ) , u ( k ) ) \begin{cases} \boldsymbol{x}\left( k+1 \right) =\boldsymbol{f}\left( \boldsymbol{x}\left( k \right) ,\boldsymbol{u}\left( k \right) \right) ,\boldsymbol{x}\left( 0 \right) =\boldsymbol{x}_0\\ \boldsymbol{y}\left( k \right) =\boldsymbol{h}\left( \boldsymbol{x}\left( k \right) ,\boldsymbol{u}\left( k \right) \right)\\\end{cases} {x(k+1)=f(x(k),u(k)),x(0)=x0y(k)=h(x(k),u(k))
其中 x ( k ) ∈ R n \boldsymbol{x}\left( k \right) \in \mathbb{R} ^n x(k)∈Rn、 u ( k ) ∈ R l \boldsymbol{u}\left( k \right) \in \mathbb{R} ^l u(k)∈Rl、 y ( k ) ∈ R q \boldsymbol{y}\left( k \right) \in \mathbb{R} ^q y(k)∈Rq分别表示时刻 系统的状态、控制输入和输出向量。基于预测模型可以计算预测方程,根据预测方程可以求解系统起始于 y ( k ) \boldsymbol{y}\left( k \right) y(k)的未来一段时间内的输出序列
{ y p ( k + 1 ∣ k ) , y p ( k + 2 ∣ k ) , ⋯ , y ( k + p ∣ k ) } \left\{ \boldsymbol{y}_p\left( k+1|k \right) , \boldsymbol{y}_p\left( k+2|k \right) , \cdots , \boldsymbol{y}\left( k+p|k \right) \right\} {yp(k+1∣k),yp(k+2∣k),⋯,y(k+p∣k)}
其中 p p p称为预测时域
控制输入序列
U k = d e f { u ( k ∣ k ) , u ( k + 1 ∣ k ) , ⋯ , u ( k + p − 1 ∣ k ) } U_k\xlongequal{\mathrm{def}}\left\{ \boldsymbol{u}\left( k|k \right) , \boldsymbol{u}\left( k+1|k \right) , \cdots , \boldsymbol{u}\left( k+p-1|k \right) \right\} Ukdef{u(k∣k),u(k+1∣k),⋯,u(k+p−1∣k)}
是MPC需要求解的优化问题的独立变量。最常见的,我们希望系统实际输出 跟踪期望的参考输入
{ r ( k + 1 ) , r ( k + 2 ) , ⋯ , r ( k + p ) } \left\{ \boldsymbol{r}\left( k+1 \right) , \boldsymbol{r}\left( k+2 \right) , \cdots , \boldsymbol{r}\left( k+p \right) \right\} {r(k+1),r(k+2),⋯,r(k+p)}
同时满足实际问题的约束条件,例如控制约束和输出约束
{ u min ⩽ u ( k + i ) ⩽ u max , i ⩾ 0 y min ⩽ y ( k + i ) ⩽ y max , i ⩾ 0 \begin{cases} \boldsymbol{u}_{\min}\leqslant \boldsymbol{u}\left( k+i \right) \leqslant \boldsymbol{u}_{\max}, i\geqslant 0\\ \boldsymbol{y}_{\min}\leqslant \boldsymbol{y}\left( k+i \right) \leqslant \boldsymbol{y}_{\max}, i\geqslant 0\\\end{cases} {umin⩽u(k+i)⩽umax,i⩾0ymin⩽y(k+i)⩽ymax,i⩾0
根据这些指标设计优化目标函数 J = J ( y ( k ) , U k ) J=J\left( y\left( k \right) , U_k \right) J=J(y(k),Uk),其最优解可记为
U k ∗ = a r g min U k J ( y ( k ) , U k ) U_{k}^{*}=\mathrm{arg}\min _{U_k}J\left( y\left( k \right) ,U_k \right) Uk∗=argUkminJ(y(k),Uk)
将 k k k时刻优化解 U k ∗ U_{k}^{*} Uk∗的第一个分量实际作用于系统,并在 k + 1 k+1 k+1时刻以新得到的测量值 y ( k + 1 ) y(k+1) y(k+1)为初始条件重新预测系统未来输出并求解优化问题。随着当前时间向前推移,预测时域也向前滚动
2 差速模型运动学
根据差分机器人运动学模型
p ˙ = [ x ˙ y ˙ θ ˙ ] = [ v cos θ v sin θ ω ] = [ f 1 f 2 f 3 ] \boldsymbol{\dot{p}}=\left[ \begin{array}{c} \dot{x}\\ \dot{y}\\ \dot{\theta}\\\end{array} \right] =\left[ \begin{array}{c} v\cos \theta\\ v\sin \theta\\ \omega\\\end{array} \right] =\left[ \begin{array}{c} f_1\\ f_2\\ f_3\\\end{array} \right] p˙= x˙y˙θ˙ = vcosθvsinθω = f1f2f3
选择状态量 p = [ x y θ ] T \boldsymbol{p}=\left[ \begin{matrix} x& y& \theta\\\end{matrix} \right] ^T p=[xyθ]T和状态误差量 x = [ x − x r y − y r θ − θ r ] T \boldsymbol{x}=\left[ \begin{matrix} x-x_r& y-y_r& \theta -\theta _r\\\end{matrix} \right] ^T x=[x−xry−yrθ−θr]T,控制量 s = [ v ω ] T \boldsymbol{s}=\left[ \begin{matrix} v& \omega\\\end{matrix} \right] ^T s=[vω]T和控制误差量 u = [ v − v r ω − ω r ] T \boldsymbol{u}=\left[ \begin{matrix} v-v_r& \omega -\omega _r\\\end{matrix} \right] ^T u=[v−vrω−ωr]T,可得
x ( k + 1 ) = ( T A + I ) x ( k ) + T B u ( k ) \boldsymbol{x}\left( k+1 \right) =\left( T\boldsymbol{A}+\boldsymbol{I} \right) \boldsymbol{x}\left( k \right) +T\boldsymbol{Bu}\left( k \right) x(k+1)=(TA+I)x(k)+TBu(k)
其中
A = [ 0 0 − v r sin θ r 0 0 v r cos θ r 0 0 0 ] , B = [ cos θ r 0 sin θ r 0 0 1 ] \boldsymbol{A}=\left[ \begin{matrix} 0& 0& -v_r\sin \theta _r\\ 0& 0& v_r\cos \theta _r\\ 0& 0& 0\\\end{matrix} \right] , \boldsymbol{B}=\left[ \begin{matrix} \cos \theta _r& 0\\ \sin \theta _r& 0\\ 0& 1\\\end{matrix} \right] A= 000000−vrsinθrvrcosθr0 ,B= cosθrsinθr0001
定义输出方程
y ( k ) = C ( k ) x ( k ) \boldsymbol{y}\left( k \right) =\boldsymbol{C}\left( k \right) \boldsymbol{x}\left( k \right) y(k)=C(k)x(k)
其中 C ( k ) \boldsymbol{C}\left( k \right) C(k)定义为单位阵
3 基于差速模型的MPC控制
为了引入模型预测控制,设计状态向量
x ~ ( k ) = [ x ( k ) u ( k − 1 ) ] \boldsymbol{\tilde{x}}\left( k \right) =\left[ \begin{array}{c} \boldsymbol{x}\left( k \right)\\ \boldsymbol{u}\left( k-1 \right)\\\end{array} \right] x~(k)=[x(k)u(k−1)]
则
x ~ ( k + 1 ) = [ A B 0 I N u ] x ~ ( k ) + [ B I N u ] Δ u ( k ) \boldsymbol{\tilde{x}}\left( k+1 \right) =\left[ \begin{matrix} \boldsymbol{A}& \boldsymbol{B}\\ \mathbf{0}& \boldsymbol{I}_{N_u}\\\end{matrix} \right]\boldsymbol{\tilde{x}}\left( k \right) +\boldsymbol{\left[ \begin{array}{c} \boldsymbol{B}\\ \boldsymbol{I}_{N_u}\\\end{array} \right]}\varDelta \boldsymbol{u}\left( k \right) x~(k+1)=[A0BINu]x~(k)+[BINu]Δu(k)
接着基于模型进行系统未来动态的预测
{ x ~ ( k + m ) = A ~ m x ~ ( k ) + ∑ i = 0 m − 1 A ~ i B ~ Δ u ( k + m − 1 − i ) x ~ ( k + p ) = A ~ p x ~ ( k ) + ∑ i = p − m p − 1 A ~ i B ~ Δ u ( k + p − 1 − i ) \begin{cases} \boldsymbol{\tilde{x}}\left( k+m \right) =\boldsymbol{\tilde{A}}^m\boldsymbol{\tilde{x}}\left( k \right) +\sum_{i=0}^{m-1}{\boldsymbol{\tilde{A}}^i\boldsymbol{\tilde{B}}\varDelta \boldsymbol{u}\left( k+m-1-i \right)}\\ \boldsymbol{\tilde{x}}\left( k+p \right) =\boldsymbol{\tilde{A}}^p\boldsymbol{\tilde{x}}\left( k \right) +\sum_{i=p-m}^{p-1}{\boldsymbol{\tilde{A}}^i\boldsymbol{\tilde{B}}\varDelta \boldsymbol{u}\left( k+p-1-i \right)}\\\end{cases} {x~(k+m)=A~mx~(k)+∑i=0m−1A~iB~Δu(k+m−1−i)x~(k+p)=A~px~(k)+∑i=p−mp−1A~iB~Δu(k+p−1−i)
同理,可迭代计算系统输出
{ y ~ ( k + m ) = C ~ A ~ i x ~ ( k ) + ∑ i = 0 m − 1 C ~ A ~ i B ~ Δ u ( k + m − 1 − i ) y ~ ( k + p ) = C ~ A i x ~ ( k ) + ∑ i = p − m p − 1 C ~ A ~ i B ~ Δ u ( k + p − 1 − i ) \begin{cases} \boldsymbol{\tilde{y}}\left( k+m \right) =\boldsymbol{\tilde{C}\tilde{A}}^i\boldsymbol{\tilde{x}}\left( k \right) +\sum_{i=0}^{m-1}{\boldsymbol{\tilde{C}\tilde{A}}^i\boldsymbol{\tilde{B}}\varDelta \boldsymbol{u}\left( k+m-1-i \right)}\\ \boldsymbol{\tilde{y}}\left( k+p \right) =\boldsymbol{\tilde{C}A}^i\boldsymbol{\tilde{x}}\left( k \right) +\sum_{i=p-m}^{p-1}{\boldsymbol{\tilde{C}\tilde{A}}^i\boldsymbol{\tilde{B}}\varDelta \boldsymbol{u}\left( k+p-1-i \right)}\\\end{cases} {y~(k+m)=C~A~ix~(k)+∑i=0m−1C~A~iB~Δu(k+m−1−i)y~(k+p)=C~Aix~(k)+∑i=p−mp−1C~A~iB~Δu(k+p−1−i)
定义预测输出向量和控制输入向量为
Y p ( k ) = d e f [ y ~ ( k + 1 ) y ~ ( k + 2 ) ⋮ y ~ ( k + p ) ] p × 1 , Δ U m ( k ) = d e f [ Δ u ( k ) Δ u ( k + 1 ) ⋮ Δ u ( k + m − 1 ) ] m × 1 \boldsymbol{Y}_p\left( k \right) \xlongequal{\mathrm{def}}\left[ \begin{array}{c} \boldsymbol{\tilde{y}}\left( k+1 \right)\\ \boldsymbol{\tilde{y}}\left( k+2 \right)\\ \vdots\\ \boldsymbol{\tilde{y}}\left( k+p \right)\\\end{array} \right] _{p\times 1}, \varDelta \boldsymbol{U}_m\left( k \right) \xlongequal{\mathrm{def}}\left[ \begin{array}{c} \varDelta \boldsymbol{u}\left( k \right)\\ \varDelta \boldsymbol{u}\left( k+1 \right)\\ \vdots\\ \varDelta \boldsymbol{u}\left( k+m-1 \right)\\\end{array} \right] _{m\times 1} Yp(k)def y~(k+1)y~(k+2)⋮y~(k+p) p×1,ΔUm(k)def Δu(k)Δu(k+1)⋮Δu(k+m−1) m×1
则系统输出方程可表达为矩阵形式
Y p ( k ) = S x x ~ ( k ) + S u Δ U m ( k ) \boldsymbol{Y}_p\left( k \right) ={S} _x\boldsymbol{\tilde{x}}\left( k \right) +{S} _u\varDelta \boldsymbol{U}_m\left( k \right) Yp(k)=Sxx~(k)+SuΔUm(k)
基于预测方程定义开环优化目标函数
J = ( Y p − Y r ) T Q ~ ( Y p − Y r ) + Δ U m T R ~ Δ U m J=\left( \boldsymbol{Y}_p-\boldsymbol{Y}_r \right) ^T\boldsymbol{\tilde{Q}}\left( \boldsymbol{Y}_p-\boldsymbol{Y}_r \right) +\varDelta \boldsymbol{U}_{m}^{T}\boldsymbol{\tilde{R}}\varDelta \boldsymbol{U}_m J=(Yp−Yr)TQ~(Yp−Yr)+ΔUmTR~ΔUm
对于优化问题 Δ U m = a r g min Δ U m J ( Δ U m ) \varDelta \boldsymbol{U}_m=\mathrm{arg}\min _{\varDelta \boldsymbol{U}_m}J\left( \varDelta \boldsymbol{U}_m \right) ΔUm=argminΔUmJ(ΔUm)有
∂ J ∂ Δ U m = ∂ ∂ Δ U m [ 1 2 Δ U m T ( S u T Q ~ S u + R ~ ) Δ U m + ( S x x ~ − Y r ) T Q ~ S u Δ U m ] \frac{\partial J}{\partial \varDelta \boldsymbol{U}_m}=\frac{\partial}{\partial \varDelta \boldsymbol{U}_m}\left[ \frac{1}{2}\varDelta \boldsymbol{U}_{m}^{T}\left( {S} _{u}^{T}\boldsymbol{\tilde{Q}}{S} _u+\boldsymbol{\tilde{R}} \right) \varDelta \boldsymbol{U}_m+\left( {S} _x\boldsymbol{\tilde{x}}-\boldsymbol{Y}_r \right) ^T\boldsymbol{\tilde{Q}}{S} _u\varDelta \boldsymbol{U}_m \right] ∂ΔUm∂J=∂ΔUm∂[21ΔUmT(SuTQ~Su+R~)ΔUm+(Sxx~−Yr)TQ~SuΔUm]
对应转化为标准的二次规划问题
Δ U m = a r g min Δ U m ( 1 2 Δ U m T H Δ U m + g T Δ U m ) \varDelta \boldsymbol{U}_m=\mathrm{arg}\min _{\varDelta \boldsymbol{U}_m}\left( \frac{1}{2}\varDelta {\boldsymbol{U}_m}^T\boldsymbol{H}\varDelta \boldsymbol{U}_m+\boldsymbol{g}^T\varDelta \boldsymbol{U}_m \right) ΔUm=argΔUmmin(21ΔUmTHΔUm+gTΔUm)
4 仿真实现
4.1 ROS C++实现
核心代码如下所示,采用osqp求解
Eigen::Vector2d MPCPlanner::_mpcControl(Eigen::Vector3d s, Eigen::Vector3d s_d, Eigen::Vector2d u_r,
Eigen::Vector2d du_p)
{
...
// Calculate kernel
std::vector<c_float> P_data;
std::vector<c_int> P_indices;
std::vector<c_int> P_indptr;
int ind_P = 0;
for (int col = 0; col < dim_u * m_; ++col)
{
P_indptr.push_back(ind_P);
for (int row = 0; row <= col; ++row)
{
P_data.push_back(P(row, col));
// P_data.push_back(P(row, col) * 2.0);
P_indices.push_back(row);
ind_P++;
}
}
P_indptr.push_back(ind_P);
// Calculate affine constraints (4m x 2m)
std::vector<c_float> A_data;
std::vector<c_int> A_indices;
std::vector<c_int> A_indptr;
int ind_A = 0;
A_indptr.push_back(ind_A);
for (int j = 0; j < m_; ++j)
{
for (int n = 0; n < dim_u; ++n)
{
for (int row = dim_u * j + n; row < dim_u * m_; row += dim_u)
{
A_data.push_back(1.0);
A_indices.push_back(row);
++ind_A;
}
A_data.push_back(1.0);
A_indices.push_back(dim_u * m_ + dim_u * j + n);
++ind_A;
A_indptr.push_back(ind_A);
}
}
// Calculate offset
std::vector<c_float> q_data;
for (int row = 0; row < dim_u * m_; ++row)
{
q_data.push_back(q(row, 0));
}
// Calculate constraints
std::vector<c_float> lower_bounds;
std::vector<c_float> upper_bounds;
for (int row = 0; row < 2 * dim_u * m_; row++)
{
lower_bounds.push_back(lower(row, 0));
upper_bounds.push_back(upper(row, 0));
}
// solve
OSQPWorkspace* work = nullptr;
OSQPData* data = reinterpret_cast<OSQPData*>(c_malloc(sizeof(OSQPData)));
OSQPSettings* settings = reinterpret_cast<OSQPSettings*>(c_malloc(sizeof(OSQPSettings)));
osqp_set_default_settings(settings);
settings->verbose = false;
settings->warm_start = true;
data->n = dim_u * m_;
data->m = 2 * dim_u * m_;
data->P = csc_matrix(data->n, data->n, P_data.size(), P_data.data(), P_indices.data(), P_indptr.data());
data->q = q.data();
data->A = csc_matrix(data->m, data->n, A_data.size(), A_data.data(), A_indices.data(), A_indptr.data());
data->l = lower_bounds.data();
data->u = upper_bounds.data();
osqp_setup(&work, data, settings);
osqp_solve(work);
auto status = work->info->status_val;
...
Eigen::Vector2d u(work->solution->x[0] + du_p[0] + u_r[0], regularizeAngle(work->solution->x[1] + du_p[1] + u_r[1]));
// Cleanup
osqp_cleanup(work);
c_free(data->A);
c_free(data->P);
c_free(data);
c_free(settings);
return u;
}
4.2 Python实现
核心代码如下所示
def mpcControl(self, s: tuple, s_d: tuple, u_r: tuple, u_p: tuple) -> np.ndarray:
...
# optimization
Yr = np.zeros((3 * self.p, 1)) # (3p x 1)
Q = np.kron(np.identity(self.p), self.Q) # (3p x 3p)
R = np.kron(np.identity(self.m), self.R) # (2m x 2m)
H = S_u.T @ Q @ S_u + R # (2m x 2m)
g = S_u.T @ Q @ (S_x @ x - Yr) # (2m x 1)
# constriants
I = np.eye(2 * self.m)
A_I = np.kron(np.tril(np.ones((self.m, self.m))), np.diag([1, 1]))
U_min = np.kron(np.ones((self.m, 1)), self.u_min)
U_max = np.kron(np.ones((self.m, 1)), self.u_max)
U_k_1 = np.kron(np.ones((self.m, 1)), np.array([[u_p[0]], [u_p[1]]]))
# boundary
dU_min = np.kron(np.ones((self.m, 1)), self.du_min)
dU_max = np.kron(np.ones((self.m, 1)), self.du_max)
# solve
solver = osqp.OSQP()
H = sparse.csc_matrix(H)
A = sparse.csc_matrix(np.vstack([A_I, I]))
l = np.vstack([U_min - U_k_1, dU_min])
u = np.vstack([U_max - U_k_1, dU_max])
solver.setup(H, g, A, l, u, verbose=False)
res = solver.solve()
dU_opt = res.x[:, None]
# first element
du = dU_opt[0:2]
# real control
u = du + np.array([[u_p[0]], [u_p[1]]]) + np.array([[u_r[0]], [u_r[1]]])
return np.array([
[self.linearRegularization(float(u[0]))],
[self.angularRegularization(float(u[1]))]
]), (float(u[0]) - u_r[0], float(u[1]) - u_r[1])
4.3 Matlab实现
核心代码如下所示
function [u, u_p_new] = mpcControl(s, s_d, u_r, u_p, robot, param)
...
% optimization
Yr = zeros(3 * param.p, 1); % (3p x 1)
Q = kron(eye(param.p), param.Q); % (3p x 3p)
R = kron(eye(param.m), param.R); % (2m x 2m)
H = S_u' * Q * S_u + R; % (2m x 2m)
g = S_u' * Q * (S_x * x - Yr); % (2m x 1)
% constriants
A_I = kron(tril(ones(param.m, param.m)), diag([1, 1]));
U_min = kron(ones(param.m, 1), param.u_min);
U_max = kron(ones(param.m, 1), param.u_max);
U_k_1 = kron(ones(param.m, 1), u_p');
% boundary
dU_min = kron(ones(param.m, 1), param.du_min);
dU_max = kron(ones(param.m, 1), param.du_max);
% solve
options = optimoptions('quadprog', 'MaxIterations', 100, 'TolFun', 1e-16, 'Display','off');
dU_opt = quadprog(H, g, [-A_I; A_I], [-U_min + U_k_1; U_max - U_k_1], [], [], dU_min, dU_max, [], options);
% first element
du = [dU_opt(1), dU_opt(2)];
% real control
u = du + u_p + u_r;
u = [linearRegularization(robot, u(1), param), angularRegularization(robot, u(2), param)];
u_p_new = u - u_r;
end
完整工程代码请联系下方博主名片获取
🔥 更多精彩专栏:
- 《ROS从入门到精通》
- 《Pytorch深度学习实战》
- 《机器学习强基计划》
- 《运动规划实战精讲》
- …