获取onnx模型输入输出结构信息的3种方式:ONNX、onnxruntime、netron

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高压输电线绝缘子缺陷智能检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

在使用onnx模型进行模型部署时,我们需要查看onnx模型的输入与输出结构,然后才能进行数据的预处理与后处理过程,从而帮助我们进行模型的部署。本文介绍3种查看onnx模型输入与输出结构的方式,以yolov8n.onnx为例。

方式1:使用netron

打开网页:https://netron.app,然后打开需要查看的onnx模型,此处打开yolov8n.onnx模型。
在这里插入图片描述
在这里插入图片描述
通过这种方式,我们不仅可以看到模型的输入与输出结构,而且可以清楚的查看模型的详细网络结构。通过右下角我们可以看到,模型的输入为【1,3,640,640】,输出为【1,84,8400】
在这里插入图片描述
解释说明:
【1,3,640,640】表示,batch为1,输入图片为3640640;
【1,84,8400】表示,batch为1,输出向量为84【代表x, y, w, h,cls类别数80】,检测框数目为8400个。

方式2:使用onnx

我们使用onnx库加载模型,并查看模型的输入输出结构。代码如下:

import onnx
# 加载ONNX模型
model = onnx.load('yolov8n.onnx')
# 获取并打印OpSet导入信息,从中可以找到OpSet版本
for imp in model.opset_import:
   print(f"Domain: {imp.domain}, Version: {imp.version}")
# 验证模型是否有效
onnx.checker.check_model(model)
# 获取并打印模型的输入信息
print("Input(s) of the model:")
for input in model.graph.input:
    print(f"Name: {input.name}, Type: {input.type}")
# 获取并打印模型的输出信息
print("\nOutput(s) of the model:")
for output in model.graph.output:
    print(f"Name: {output.name}, Type: {output.type}")

输出结果如下:

Domain: , Version: 17
Input(s) of the model:
Name: images, Type: tensor_type {
  elem_type: 1
  shape {
    dim {
      dim_value: 1
    }
    dim {
      dim_value: 3
    }
    dim {
      dim_value: 640
    }
    dim {
      dim_value: 640
    }
  }
}


Output(s) of the model:
Name: output0, Type: tensor_type {
  elem_type: 1
  shape {
    dim {
      dim_value: 1
    }
    dim {
      dim_value: 84
    }
    dim {
      dim_value: 8400
    }
  }
}

可以看到输入为【1,3,640,640】,输出为【1,84,8400】。

方式3:使用onnxruntime

我们使用onnxruntime库加载模型,并查看模型的输入输出结构。代码如下:

import onnxruntime as ort
providers = ["CPUExecutionProvider"]
session_options = ort.SessionOptions()
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# 使用ONNX模型创建推理会话,并指定执行提供者
session = ort.InferenceSession('yolov8n.onnx',
                              session_options=session_options,
                              providers=providers)

# 获取模型的输入信息
inputs_info = session.get_inputs()
print("Input(s) of the model:")
for input in inputs_info:
    print(f"Name: {input.name}, Shape: {input.shape}, Type: {input.type}")

# 获取模型的输出信息
outputs_info = session.get_outputs()
print("\nOutput(s) of the model:")
for output in outputs_info:
    print(f"Name: {output.name}, Shape: {output.shape}, Type: {output.type}")

打印信息如下:

Input(s) of the model:
Name: images, Shape: [1, 3, 640, 640], Type: tensor(float)

Output(s) of the model:
Name: output0, Shape: [1, 84, 8400], Type: tensor(float)

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/762610.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二、基础—常用数据结构:列表、元祖、集合、字典、函数等(爬虫及数据可视化)

二、基础—常用数据结构:列表、元祖、集合、字典、函数等(爬虫及数据可视化) 1,字符串2,最常用的是列表(重点掌握)3,元组4,字典(重要)5&#xff0…

51-1 内网信息收集 - 内网资源探测

导语 在内网渗透过程中,通常需要利用各种技术来探测内网资源,为后续的横向渗透做准备。发现内网存活的主机及其详细信息可以帮助确定攻击方向和潜在的漏洞。 一、基于 ICMP 发现存活主机 ICMP(Internet Control Message Protocol,因特网控制消息协议)是 TCP/IP 协议簇的…

python 笔试面试八股(自用版~)

1 解释型和编译型语言的区别 解释是翻译一句执行一句,更灵活,eg:python; 解释成机器能理解的指令,而不是二进制码 编译是整个源程序编译成机器可以直接执行的二进制可运行的程序,再运行这个程序 比如c 2 简述下 Pyth…

springcloud-gateway 网关组件中文文档

Spring Cloud网关 Greenwich SR5 该项目提供了一个基于Spring生态系统的API网关,其中包括:Spring 5,Spring Boot 2和项目Reactor。Spring Cloud网关的目的是提供一种简单而有效的方法来路由到API,并向它们提供跨领域的关注&#x…

7.1作业

初始化 /******rcc章节初始化********/ |//1.使能gpiob组控制器 |RCC->MP_AHB4ENSETR |(0X1<<1); |//2.使能gpiog组控制器 |RCC-&…

数据结构 - C/C++ - 链表

目录 结构特性 内存布局 结构样式 结构拓展 单链表 结构定义 节点关联 插入节点 删除节点 常见操作 双链表 环链表 结构容器 结构设计 结构特性 线性结构的存储方式 顺序存储 - 数组 链式存储 - 链表 线性结构的链式存储是通过任意的存储单元来存储线性…

制氢厂氢气泄漏安全监测:氢气传感器守护“氢”安全

随着全球能源结构的转型和清洁能源的需求日益增长&#xff0c;氢能作为一种高效、清洁的能源载体&#xff0c;受到了广泛关注。制氢厂作为氢能产业的重要组成部分&#xff0c;其安全问题也日益凸显。在制氢过程中&#xff0c;氢气泄漏是潜在的安全隐患之一&#xff0c;因此&…

Python容器 之 字符串--下标和切片

1.下标&#xff08;索引&#xff09; 一次获取容器中的一个数据 1, 下标(索引), 是数据在容器(字符串, 列表, 元组)中的位置, 编号 2, 一般来说,使用的是正数下标, 从 0 开始 3, 作用: 可以通过下标来获取具体位置的数据. 4, 语法&#xff1a; 容器[下标] 5, Python 中是支持…

猫冻干可以天天喂吗?喂冻干前要了解的必入主食冻干榜单

近年来&#xff0c;冻干猫粮因其高品质而备受喜爱&#xff0c;吸引了无数猫主人的目光&#xff0c;对于像我这样的养猫达人来说&#xff0c;早已尝试并认可了冻干喂养。然而&#xff0c;对于初入养猫行列的新手们来说&#xff0c;可能会有疑问&#xff1a;什么是冻干猫粮&#…

通过容器启动QAnything知识库问答系统

QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统&#xff0c;可断网安装使用。目前已支持格式&#xff1a;PDF(pdf)&#xff0c;Word(docx)&#xff0c;PPT(pptx)&#xff0c;XLS(xlsx)&#xff0c;Markdown(md)&…

操作配置文件保存方式(上位机)

上位机:(Supervisor Control) 指的是用于监视和控制其他设备或者系统的计算机&#xff0c;在工业自动化和过程控制领域 上位机典型就是一台PC或者服务器&#xff0c;用于语各种下位机进行通信的&#xff0c;收集数据&#xff0c;并且根据收集的数据发送一些数据。 典型的设备…

一文讲懂npm link

前言 在本地开发npm模块的时候&#xff0c;我们可以使用npm link命令&#xff0c;将npm 模块链接到对应的运行项目中去&#xff0c;方便地对模块进行调试和测试 用法 包链接是一个两步过程&#xff1a; 1.为依赖项创建全局软链npm link。一个符号链接&#xff0c;简称软链&a…

为什么127.0.0.1和localhost之间算跨域?

原文&#xff1a;https://mp.weixin.qq.com/s/4zJBMNEntwjqAfN6A6diUA 什么是同源策略、跨域 跨域问题是指在浏览器中&#xff0c;当一个网页向不同域名、不同端口或不同协议的资源发起请求时&#xff0c;会受到限制。这是由浏览器的**同源策略&#xff08;Same-Origin Policy…

沉浸感拉满的三模游戏外设神器!谷粒金刚3 Pro游戏手柄开箱试玩

沉浸感拉满的三模游戏外设神器&#xff01;谷粒金刚3 Pro游戏手柄开箱试玩 哈喽小伙伴们好&#xff0c;我是Stark-C~ 对于喜欢打游戏的玩家来说&#xff0c;一款得力的游戏外设绝对是提升游戏体验&#xff0c;增加游戏乐趣的重要神器&#xff01;而在众多的外设中&#xff0c…

Redis基础教程(六):redis 哈希(Hash)

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

tkinter实现进度条

tkinter实现进度条 效果代码解析导入需要的模块定义进度条 代码 效果 代码解析 导入需要的模块 import tkinter as tk from tkinter import ttk定义进度条 def start_progress():progress[value] 0max_value 100step 10for i in range(0, max_value, step):progress[valu…

基于大数据架构的情感分析

1 项目介绍 1.1 研究目的和意义 随着大数据时代的到来&#xff0c;电影产业积累了海量的用户评论数据&#xff0c;这些数据中蕴含着观众的情感倾向与偏好信息&#xff0c;为电影推荐和市场策略制定提供了宝贵资源。然而&#xff0c;如何高效地从这浩瀚的数据海洋中提炼出有价…

Linux高并发服务器开发(八)Socket和TCP

文章目录 1 IPV4套接字结构体2 TCP客户端函数 3 TCP服务器流程函数代码粘包 4 三次握手5 四次挥手6 滑动窗口 1 IPV4套接字结构体 2 TCP客户端 特点&#xff1a;出错重传 每次发送数据对方都会回ACK&#xff0c;可靠 tcp是打电话的模型&#xff0c;建立连接 使用连接 关闭连接…

论文阅读《U-KAN Makes Strong Backbone for MedicalImage Segmentation and Generation》

Abstract U-Net 已成为图像分割和扩散概率模型等各种视觉应用的基石。虽然通过结合transformer或 MLP&#xff0c;U-Net 已经引入了许多创新设计和改进&#xff0c;但仍然局限于线性建模模式&#xff0c;而且可解释性不足。为了应对这些挑战&#xff0c;我们的直觉受到了 Kolm…

PCL 基于点云RGB颜色的区域生长算法

RGB颜色的区域生长算法 一、概述1.1 算法定义1.2 算法特点1.3 算法实现二、代码示例三、运行结果🙋 结果预览 一、概述 1.1 算法定义 点云RGB区域生长算法: 是一个基于RGB颜色信息的区域生长算法,用于点云分割。该算法利用了点云中相邻点之间的颜色相似性来将点云分割成…