昇思25天学习打卡营第10天 | 基于MindNLP+MusicGen生成自己的个性化音乐

基于MindNLP+MusicGen生成自己的个性化音乐

MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《Simple and Controllable Music Generation》。

MusicGen模型基于Transformer结构,可以分解为三个不同的阶段:

  1. 用户输入的文本描述作为输入传递给一个固定的文本编码器模型,以获得一系列隐形状态表示。
  2. 训练MusicGen解码器来预测离散的隐形状态音频token。
  3. 对这些音频token使用音频压缩模型(如EnCodec)进行解码,以恢复音频波形。

MusicGen直接使用谷歌的t5-base及其权重作为文本编码器模型,并使用EnCodec 32kHz及其权重作为音频压缩模型。MusicGen解码器是一个语言模型架构,针对音乐生成任务从零开始进行训练。

MusicGen 模型的新颖之处在于音频代码的预测方式。传统上,每个码本都必须由一个单独的模型(即分层)或通过不断优化 Transformer 模型的输出(即上采样)进行预测。与传统方法不同,MusicGen采用单个stage的Transformer LM结合高效的token交织模式,取消了多层级的多个模型结构,例如分层或上采样,这使得MusicGen能够生成单声道和立体声的高质量音乐样本,同时提供更好的生成输出控制。MusicGen不仅能够生成符合文本描述的音乐,还能够通过旋律条件控制生成的音调结构。

在这里插入图片描述

Figure 1: MusicGen使用的码本延迟模式,来源于 MusicGen paper.

下载模型

MusicGen提供了small、medium和big三种规格的预训练权重文件,本次指南默认使用small规格的权重,生成的音频质量较低,但是生成的速度是最快的:

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
%%capture captured_output
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1 jieba soundfile librosa`
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindnlp jieba soundfile librosa
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: mindnlp
from mindnlp.transformers import MusicgenForConditionalGeneration

model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.024 seconds.
Prefix dict has been built successfully.



  0%|          | 0.00/1.55k [00:00<?, ?B/s]



  0%|          | 0.00/2.20G [00:00<?, ?B/s]


Failed to download: ("Connection broken: ConnectionResetError(104, 'Connection reset by peer')", ConnectionResetError(104, 'Connection reset by peer'))
Retrying... (attempt 0/5)



  9%|9         | 203M/2.20G [00:00<?, ?B/s]


\


  0%|          | 0.00/224 [00:00<?, ?B/s]

生成音乐

MusicGen支持两种生成模式:贪心(greedy)和采样(sampling)。在实际执行过程中,采样模式得到的结果要显著优于贪心模式。因此我们默认启用采样模式,并且可以在调用MusicgenForConditionalGeneration.generate时设置do_sample=True来显式指定使用采样模式。

无提示生成

我们可以通过方法 MusicgenForConditionalGeneration.get_unconditional_inputs 获得网络的随机输入,然后使用 .generate 方法进行自回归生成,指定 do_sample=True 来启用采样模式:

%%time
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)

audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
CPU times: user 6min 25s, sys: 1min 15s, total: 7min 40s
Wall time: 9min 34s

音频输出是格式是: a Torch tensor of shape (batch_size, num_channels, sequence_length)

使用第三方库scipy将输出的音频保存为musicgen_out.wav 文件。

import scipy

sampling_rate = model.config.audio_encoder.sampling_rate
scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

参数 max_new_tokens 指定要生成 token 数。根据经验,可以使用 EnCodec 模型的帧速率计算出生成的音频样本的长度(以秒为单位):

audio_length_in_s = 256 / model.config.audio_encoder.frame_rate

audio_length_in_s
5.12

文本提示生成

首先基于文本提示,通过AutoProcessor对输入进行预处理。然后将预处理后的输入传递给 .generate 方法以生成文本条件音频样本。同样,我们通过设置“do_sample=True”来启用采样模式。

其中,guidance_scale 用于无分类器指导(CFG),设置条件对数之间的权重(从文本提示中预测)和无条件对数(从无条件或空文本中预测)。guidance_scale越高表示生成的模型与输入的文本更加紧密。通过设置guidance_scale > 1来启用 CFG。为获得最佳效果,使用guidance_scale=3(默认值)生成文本提示音频。

%%time
from mindnlp.transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("facebook/musicgen-small")

inputs = processor(
    text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
  0%|          | 0.00/433 [00:00<?, ?B/s]



  0%|          | 0.00/773k [00:00<?, ?B/s]



0.00B [00:00, ?B/s]



  0%|          | 0.00/335 [00:00<?, ?B/s]


CPU times: user 6min 23s, sys: 1min 11s, total: 7min 35s
Wall time: 10min 16s
scipy.io.wavfile.write("musicgen_out_text.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

音频提示生成

AutoProcessor同样可以对用于音频预测的音频提示进行预处理。在以下示例中,我们首先加载音频文件,然后进行预处理,并将输入给到网络模型来进行音频生成。最后,我们将生成出来的音频文件保存为musicgen_out_audio.wav

%%time
from datasets import load_dataset

processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
sample = next(iter(dataset))["audio"]

# take the first half of the audio sample
sample["array"] = sample["array"][: len(sample["array"]) // 2]

inputs = processor(
    audio=sample["array"],
    sampling_rate=sample["sampling_rate"],
    text=["80s blues track with groovy saxophone"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
  0%|          | 0.00/275 [00:00<?, ?B/s]



Downloading readme:   0%|          | 0.00/400 [00:00<?, ?B/s]


'HTTPSConnectionPool(host='cdn-lfs.hf-mirror.com', port=443): Read timed out.' thrown while requesting GET https://hf-mirror.com/datasets/sanchit-gandhi/gtzan/resolve/4bd857132cb0e731bef3ec68558e7acc0a85f144/data/train-00000-of-00003-abaaa5719027ce5c.parquet
Retrying in 1s [Retry 1/5].


CPU times: user 6min 37s, sys: 1min 10s, total: 7min 48s
Wall time: 11min 36s
scipy.io.wavfile.write("musicgen_out_audio.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

为了演示批量音频提示生成,我们将按两个不同的比例对样本音频进行切片,以提供两个不同长度的音频样本。由于输入音频提示的长度各不相同,因此在传递到模型之前,它们将被填充到批处理中最长的音频样本的长度。

要恢复最终音频样本,可以对生成的audio_values进行后处理,以再次使用处理器类删除填充:

sample = next(iter(dataset))["audio"]

# take the first quater of the audio sample
sample_1 = sample["array"][: len(sample["array"]) // 4]

# take the first half of the audio sample
sample_2 = sample["array"][: len(sample["array"]) // 2]

inputs = processor(
    audio=[sample_1, sample_2],
    sampling_rate=sample["sampling_rate"],
    text=["80s blues track with groovy saxophone", "90s rock song with loud guitars and heavy drums"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)

# post-process to remove padding from the batched audio
audio_values = processor.batch_decode(audio_values, padding_mask=inputs.padding_mask)
-
Audio(audio_values[0], rate=sampling_rate)

生成配置

控制生成过程的默认参数(例如采样、指导比例和生成的令牌数量)可以在模型的生成配置中找到,并根据需要进行更新。首先,我们检查默认的生成配置:

print('guidance_scale:\t'+str(model.generation_config.guidance_scale))
print('max_new_tokens:\t'+str(model.generation_config.max_new_tokens))
print('temperature:\t'+str(model.generation_config.temperature))
# 更多参数见
# https://gitee.com/mindspore-lab/mindnlp
# mindnlp/mindnlp/transformers/generation/configuration_utils.py
guidance_scale:	4.0
max_new_tokens:	256
temperature:	1.5

我们看到模型默认使用采样模式 (do_sample=True),指导刻度为 3,最大生成长度为 1500(相当于 30 秒的音频)。你可以更新以下任一属性以更改默认生成参数:

# increase the guidance scale to 4.0
model.generation_config.guidance_scale = 4.0

# set the max new tokens to 256
model.generation_config.max_new_tokens = 256

# set the softmax sampling temperature to 1.5
model.generation_config.temperature = 1.5

现在重新运行生成将使用生成配置中新定义的值

audio_values = model.generate(**inputs)

请注意,传递给 generate 方法的任何参数都将取代生成配置中的参数,因此在调用 generate 中设置 do_sample=False 将取代生成配置中 model.generation_config.do_sample 的设置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/760300.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C程序设计谭浩强第五版

程序习题 第一章1、第5题2、第6题 第三章1、第2题2、第2题3、第3题4、第4题Tips 第一章 1、第5题 编写一个C程序,运行时输出以下图形: #include <stdio.h> int main() {for (int i 0; i < 4; i) // 输出4行循环控制{for (int j 0; j < i; j) //第几行就输出几…

jenkins中执行docker命令

1. 修改docker.sock文件的所属组 命令如下&#xff1a; sudo chown root:root docker.sock 2. 对这个文件赋予权限&#xff0c;供其他用户使用&#xff0c;给定权限命令如下&#xff1a; sudo chmod orw docker.sock 3. docker容器映射 这里需要两个文件&#xff1a; 一个…

Selenium时间控件的处理

我们经常在做web自动化测试过程中会遇到时间控件&#xff0c;那么对于时间控件如何处理&#xff0c;我们可以来分析下。 对于时间控件一般分为两种&#xff1a; 1、普通的时间控件 直接通过send_keys就可以解决 d.get("https://www.ctrip.com/?sid155952&alliancei…

华三(H3C)交换机堆叠配置

目录 一、相关理论 二、实验需求 三、实验组网 四、具体配置 4.1 堆叠配置 4.2 查看堆叠相关配置 4.3 MAD 检测配置 一、相关理论 H3C的堆叠称为IRF&#xff08;Intelligent Resilient Framework&#xff0c;智能弹性架构&#xff09; IRF中每台设备都称为成员设备。成…

架构师篇-7、企业安全架构设计及实践

摘要&#xff1a; 认识企业安全架构企业安全案例分析及实践 内容&#xff1a; 为什么做企业安全架构怎么做好安全架构设计案例实践分析&随堂练 为什么要做企业安全架构 安全是麻烦制造者&#xff1f; 整天提安全需求增加开发工作增加运维要求增加不确定性延后业务上线…

Datawhale机器学习day-1

赛题 在当今科技日新月异的时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正以前所未有的深度和广度渗透到科研领域&#xff0c;特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例&#xff0c;它是…

理想汽车提出3DRealCar:首个大规模3D真实汽车数据集

理想提出3DRealCar&#xff0c;这是第一个大规模 3D 实车数据集&#xff0c;包含 2500 辆在真实场景中拍摄的汽车。我们希望 3DRealCar 可以成为促进汽车相关任务的宝贵资源。 理想汽车提出3DRealCar&#xff1a;首个大规模3D真实汽车数据集! 我们精心策划的高质量3DRealCar数…

基于公有云部署wordpress

云平台选择 腾讯云 阿里云 华为云 项目部署 一、架构讲解 1.1、定义与组成 LNMP是Linux、Nginx、MySQL&#xff08;或MariaDB&#xff09;和PHP&#xff08;或Perl、Python&#xff09;的首字母缩写&#xff0c;代表在Linux系统下使用Nginx作为Web服务器&#xff0c;MySQL作为…

【SGX系列教程】(八)Intel-SGX 官方示例分析(SampleCode)——Seal Unseal

文章目录 一.Seal Unseal原理介绍1.1 Intel SGX supported Sealing Policies 二.源码分析2.1 README2.2 重点代码分析2.2.1 主要代码模块交互流程分析2.2.2 App/App.cpp2.2.3 Enclave_Seal/Enclave_Seal.cpp2.2.4 Enclave_Unseal/Enclave_Unseal.cpp 2.3 总结 三.参考文献四.感…

PMBOK® 第六版 结束项目或阶段

目录 读后感—PMBOK第六版 目录 不论是阶段的收尾还是项目整体的收尾&#xff0c;都应是令人振奋的事。然而&#xff0c;在实际生活中&#xff0c;收尾工作却相当艰难。会遭遇负责人调离、换任&#xff0c;导致不再需要已购产品&#xff1b;项目收尾时对照招标文件或合同&…

基于python的房价多元线性回归分析

1.导入必要的库 import pandas as pd import numpy as np import statsmodels.api as sm from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import matplotlib.pyplot as plt # 忽略Matplotlib的警告&#xff08;可选&…

SpringBoot实现文章点赞功能

提示&#xff1a;今日是2024年的6月30日&#xff0c;未来的你看到这篇文章&#xff0c;希望你依旧快乐 文章目录 前言 首先在这里前缀部分我就不做要求了,比如说登录信息什么的 数据库表格 这里实现点赞功能&#xff0c;主要是围绕论坛项目完成的 user_info代表用户信息表 for…

20240630每日一题-组合数学-平均分组问题

更多资源请关注纽扣编程微信公众号 将6个小球&#xff0c;其中1个红球&#xff0c;2个黑球&#xff0c;3个白球拍成一列&#xff0c;相同颜色的球没区别&#xff0c;那么有多少种排法&#xff1f; 答案 60种 分析 相同颜色的小球可以看作平均分组&#xff0c;去除对应排序的…

Zookeeper:Zookeeper JavaAPI操作与分布式锁

文章目录 一、Zookeeper JavaAPI操作1、Curator介绍2、创建、查询、修改、删除节点3、Watch事件监听 二、Zookeeper分布式锁原理 一、Zookeeper JavaAPI操作 1、Curator介绍 Curator是Apache Zookeeper的Java客户端。常见的Zookeeper Java API&#xff1a; 原生Java API。ZkC…

基于PHP的酒店管理系统(改进版)

有需要请加文章底部Q哦 可远程调试 基于PHP的酒店管理系统(改进版) 一 介绍 此酒店管理系统(改进版)基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端jquery插件美化。系统角色分为用户和管理员。系统在原有基础上增加了注册登录注销功能&#xff0c;增加预订房间图片…

临时文件上传系统Plik

什么是 Plik &#xff1f; Plik 是一个基于 Go 语言的可扩展且用户友好的临时文件上传系统&#xff08;类似于 Wetransfer&#xff09;。 软件主要特点&#xff1a; 强大的命令行客户端易于使用的 Web 用户界面多个数据后端&#xff1a;文件、OpenStack Swift、S3、Google Clo…

Swift中的二分查找:全面指南

Swift中的二分查找&#xff1a;全面指南 简介 二分查找是计算机科学中的经典算法&#xff0c;被广泛用于在已排序的数组中高效地搜索目标值。与线性查找逐个检查每个元素不同&#xff0c;二分查找不断将搜索区间减半&#xff0c;因此在处理大数据集时要快得多。 在这篇博客中…

java基于ssm+jsp 固定资产管理系统

1前台首页功能模块 固定资产管理系统&#xff0c;在系统首页可以查看首页、设备信息、论坛信息、我的、跳转到后台等内容&#xff0c;如图1所示。 图1前台首页功能界面图 注册&#xff0c;在注册页面可以填写用户名、密码、姓名、性别、头像、身份证、手机等详细内容&#xff…

基于Ollama Python的本地多模态大模型

0&#xff0c;背景 最近测试Ollama&#xff0c;发现之前直接下载开源模型在我电脑上都跑不动的模型&#xff0c;居然也能运行了&#xff08;AMD 7840HS核显/32GB内存&#xff09;&#xff0c;突发奇想那些多模态大模型能不能基于Python接口使用&#xff0c;所以决定尝试一下。…

Qt之Pdb生成及Dump崩溃文件生成与调试(含注释和源码)

文章目录 一、Pdb生成及Dump文件使用示例图1.Pdb文件生成2.Dump文件调试3.参数不全Pdb生成的Dump文件调试 二、个人理解1.生成Pdb文件的方式2.Dump文件不生产的情况 三、源码Pro文件mian.cppMainWindowUi文件 总结 一、Pdb生成及Dump文件使用示例图 1.Pdb文件生成 下图先通过…