分治精炼宝库-----快速排序运用(⌯꒪꒫꒪)੭

目录

一.基本概念:

一.颜色分类:

二.排序数组:

三.数组中的第k个最大元素:

解法一:快速选择算法

解法二:简单粗暴优先级队列

 四.库存管理Ⅲ:

解法一:快速选择

解法二:简单粗暴排序

解法三:简单粗暴优先级队列


一.基本概念:

🐻在计算机科学中,分治法是一种很重要的算法。字面上的解释就是“分而治之”,就是把一个复杂的问题分成两个或则更多个相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。🧐分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

当我们对分治算法有了以上的一定了解后,来练习几道题目加深理解~~

注(本文承接上文:分治精炼宝库----归并排序应用( ´◔︎ ‸◔︎`)_用分治法归并排序-CSDN博客)

一.颜色分类:

说明:这里我们用到的快速排序会使用数组分三块的思想(下文会详细说明),从数组中随机取一个元素key,将数组划分为三个区域,区域① < key ,区域 ② = key ,区域③ > key

题目链接:75. 颜色分类 - 力扣(LeetCode)

算法思路:

  1. 使用左指针left和右指针right来划分数组,初始时left为-1,right为数组长度n。
  2. 遍历数组nums,使用变量i作为当前遍历的索引。
  3. 如果nums[i]等于0,则将nums[i]与left+1位置的值交换,并将left和i都加1。
  4. 如果nums[i]等于1,则继续遍历下一个值。
  5. 如果nums[i]等于2,则将nums[i]与right-1位置的值交换,并将right和i都减1。
  6. 重复步骤4-6,直到遍历完成整个数组。

核心步骤:

代码详解:

class Solution {
    public void sortColors(int[] nums) {
        //将数组划分为三个区域[0,1,2]
        int n = nums.length;
        for(int i = 0,left = -1,right = n;i < right;){
            if(nums[i] == 0){
                swap(nums,++left,i++);
            }else if(nums[i] == 1){
                i++;
            }else{
                swap(nums,--right,i);
            }
        }
    }

    public void swap(int[] nums,int i,int j){
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
}

运行结果:

二.排序数组:

题目链接:912. 排序数组 - 力扣(LeetCode)

这里我们使用快速排序来解决,首先,我们来一起看一下快速排序的核心框架:

void sort(int[] nums, int lo, int hi) {
    if (lo >= hi) {
        return;
    }
    // 对 nums[lo..hi] 进行切分
    // 使得 nums[lo..p-1] <= nums[p] < nums[p+1..hi]
    int p = partition(nums, lo, hi);
    // 去左右子数组进行切分
    sort(nums, lo, p - 1);
    sort(nums, p + 1, hi);
}

快速排序的核心即是先将一个元素排好序,再将剩下的元素排好序

 快速排序的核心无疑是 partition 函数, partition 函数的作用是在 nums[lo..hi] 中寻找一个切分点 p,通过交换元素使得 nums[lo..p-1] 都小于等于 nums[p],且 nums[p+1..hi] 都大于 nums[p].

一个元素左边它小,右边都比它大,什么意思?不就是把它放到正确的排好序的位置上了吗?

所以 partition 函数干的事情,其实就是把 nums[p] 这个元素排好序了。

一个元素被排好序了,然后呢?你再把剩下的元素排好序不就行了嘛,排序图解:

其实我们不难发现,拍好序的数组就是一颗二叉搜索树!快速排序的过程其实也就是构造一棵二叉搜索树的过程

 但谈到二叉搜索树的构造,那就不得不说二叉搜索树不平衡的极端情况,极端情况下二叉搜索树会退化成一个链表,导致操作效率大幅降低。这也和快速排序是一样的道理,特别是数组元素都相同的情况下,时间复杂度会大幅上升。

为了避免这种情况,我们要引入随机性:

用代码表示就是(取left ~ right 区间的随机数,加上偏移量left):

int key = nums[new Random().nextInt(r - l + 1) + l];

快排思路: 

从数组中随机取一个元素key,将数组划分为三个区域,区域① < key ,区域 ② = key ,

区域③ > key,然后排序①区间和②区间即可

代码详解:

class Solution {
     public int[] sortArray(int[] nums) {
        quickSort(nums,0,nums.length - 1);
        return nums;
    }

    public void quickSort(int[] nums,int l,int r){
        if(l >= r) return ;

        //设置一个随机数,然后将数组分为三块
        int key = nums[new Random().nextInt(r - l + 1) + l];
        int left = l - 1,cur = l,right = r + 1;
        while(cur < right){
            if(nums[cur] < key){
                swap(nums,++left,cur++);
            }else if(nums[cur] == key){
                cur++;
            }else{
                swap(nums,--right,cur);
            }
        }
        //在接着往后面找,此时数组区域[l,left] [left + 1,right - 1] [right,r]
        quickSort(nums,l,left);
        quickSort(nums,right,r);
    }

    public void swap(int[] nums,int i,int j){
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
}

运行结果:

三.数组中的第k个最大元素:

题目链接:215. 数组中的第K个最大元素 - 力扣(LeetCode)

解法一:快速选择算法

思路:

在快排中,当我们把数组「分成三块」之后: [l, left] [left + 1, right - 1] [right, r] ,我们可以通过计算每⼀个区间内元素的「个数」,进⽽推断出我们要找的元素是 在「哪⼀个区间」⾥⾯。那么我们可以直接去「相应的区间」去寻找最终结果就好了:

 代码详解:

class Solution {
    public int findKthLargest(int[] nums, int k) {
        //快速选择算法,返回第k大的元素
        int res = quickSort(nums,0,nums.length - 1,k);
        return res;
    }

    public int quickSort(int[] nums,int l,int r,int k){
        //当只有一个元素或则区间不存在时,直接返回
        if(l >= r) return nums[l];
        //数组分三块 [l,left][left + 1,right - 1][right,r]
        int key = nums[new Random().nextInt(r - l + 1) + l];
        int left = l - 1,cur = l,right = r + 1;
        while(cur < right){
            if(nums[cur] < key){
                swap(nums,++left,cur++);
            }else if(nums[cur] == key){
                cur++;
            }else{
                swap(nums,--right,cur);
            }
        }
        //分别对a b c 三个区间做判断,合适的区间
        int b = right - left - 1,c = r - right + 1;
        if(c >= k) return quickSort(nums,right,r,k);
        else if(b + c >= k) return key;
        //如果都不是,就去[l,left]区间找k - b - c大的元素
        else return quickSort(nums,l,left,k - b - c);
    }

    public void swap(int[] nums,int i,int j){
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
}

运行结果: 

解法二:简单粗暴优先级队列

代码详解:

class Solution {
     public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> heap = new PriorityQueue<>((o1,o2)->{
            return o2.compareTo(o1);
        });
        for(int i = 0;i < nums.length;i++){
            heap.offer(nums[i]);
        }
        int res = 0;
        for(int i = 0;i < k;i++){
            res = heap.poll();
        }
        return res;
    }
}

 运行结果:

 四.库存管理Ⅲ:

题目链接:LCR 159. 库存管理 III - 力扣(LeetCode)

解法一:快速选择

 思路:

在快排中,当我们把数组「分成三块」之后: [l, left] [left + 1, right - 1] [right, r] ,我们可以通过计算每⼀个区间内元素的「个数」,进⽽推断出最⼩的k个数在哪 些区间⾥⾯,那么我们可以直接去「相应的区间」继续划分数组即可:

 代码详解:

class Solution {
    public int[] inventoryManagement(int[] stock, int k) {
        quickSort(stock,0,stock.length - 1,k);

        int[] res = new int[k];
        for(int i = 0;i < k;i++){
            res[i] = stock[i];
        }
        return res;
    }

    public void quickSort(int[] nums,int l,int r,int k){
        if(l >= r) return ;

        //随机取数
        int key = nums[new Random().nextInt(r - l + 1) + l];
        int left = l - 1,cur = l,right = r + 1;
        while(cur < right){
            if(nums[cur] < key){
                swap(nums,++left,cur++);
            }else if(nums[cur] == key){
                cur++;
            }else{
                swap(nums,--right,cur);
            }
        }
        //寻找区间最小k个值[l,left] [left + 1,right - 1][right,r]
        int a = left - l + 1,b = right - left - 1;
        if(a > k) quickSort(nums,l,left,k);
        else if(a + b >= k) return ;
        else quickSort(nums,right,r,k - a - b);
    }
    public void swap(int[] nums,int i,int j){
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }
}

运行结果:

解法二:简单粗暴排序

代码详解:

class Solution {
    public int[] inventoryManagement(int[] stock, int cnt) {
        Arrays.sort(stock);
        int[] res = new int[cnt];
        for(int i = 0;i < cnt;i++){
            res[i] = stock[i];
        }
        return res;
    }
}

运行结果:

解法三:简单粗暴优先级队列

代码详解:

class Solution {
    public int[] inventoryManagement(int[] stock, int cnt) {
        PriorityQueue<Integer> heap = new PriorityQueue<>();
        for(int i = 0; i < stock.length; i++){
            heap.offer(stock[i]);
        }
        int[] res = new int[cnt];
        for(int i = 0;i < cnt;i++){
            res[i] = heap.poll();
        }
        return res;
    }
}

参考资料:

 五大常用算法之一:分治算法 - Will_Don - 博客园 (cnblogs.com)

《labuladong算法笔记》

封面来自:《hello 算法》

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/759964.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux ls文件排序

linux可以使用ls命令结合一些选项来按照文件大小对文件和目录进行排序。以下是一些常用的方法&#xff1a; 1、这里&#xff0c;-l 选项表示长格式输出&#xff08;包括文件权限、所有者、大小等&#xff09;&#xff0c;-S 选项表示按照文件大小排序&#xff0c;-h 选项表示以…

docker -run hello-world超时

主要原因就是尝试拉取库的时候没有从阿里云镜像里拉&#xff0c;所以设置一下就好了 这里使用的是ubuntu系统&#xff08;命令行下逐行敲就行了&#xff09; sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": [&quo…

MSPM0G3507——定时器例程讲解4——timx_timer_mode_periodic

以下示例以周期模式配置TimerG并切换LED。周期从500ms开始&#xff0c;每次切换减少50ms&#xff0c;直到周期为100ms&#xff0c;然后重复。设备在等待中断时保持待机模式 #include "ti_msp_dl_config.h"/* ((32KHz / (321)) * 0.5s) 45 - 1 495 due to N1 ticks …

FastGPT 调用Qwen 测试Hello world

Ubuntu 安装Qwen/FastGPT_fastgpt message: core.chat.chat api is error or u-CSDN博客 参考上面文档 安装FastGPT后 登录&#xff0c; 点击右上角的 新建 点击 这里&#xff0c;配置AI使用本地 ollama跑的qwen模型 问题&#xff1a;树上有3只鸟&#xff0c;开了一枪&#…

基于YOLOv9的PCB板缺陷检测

数据集 PCB缺陷检测&#xff0c;我们直接采用北京大学智能机器人开放实验室数据提供的数据集&#xff0c; 共六类缺陷 漏孔、鼠咬、开路、短路、杂散、杂铜 已经对数据进行了数据增强处理&#xff0c;同时按照YOLO格式配置好&#xff0c;数据内容如下 模型训练 ​ 采用YOLO…

Sping源码(九)—— Bean的初始化(非懒加载)— Bean的创建方式(构造器方法)

序言 前面几篇文章介绍了Spring中几种方式下Bean对象的实例化的过程&#xff0c;那如果之前的几种都不满足&#xff0c;按照Spring中正常Bean的实例化步骤&#xff0c;该如何创建这个Bean对象呢&#xff1f; 测试类 我们先创建几个debug中用到的栗子。 Person 以一个平平无…

文章浮现之单细胞VDJ的柱状图

应各位老师的需求复现一篇文章的中的某个图 具体复现图5的整个思路图&#xff0c;这里没有原始数据&#xff0c;所以我使用虚拟生产的metadata进行画图 不废话直接上代码&#xff0c;先上python的代码的结果图 import matplotlib.pyplot as plt import numpy as np# 数据&#…

Linux 交叉编译工具链格式 sqlite3编译示例

1、交叉编译工具链 1.1 定义 交叉编译工具链是一个由编译器、连接器和解释器组成的综合开发工具集&#xff0c;它允许开发者在一个平台上&#xff08;例如高性能的PC或服务器&#xff09;编译生成另一个平台&#xff08;例如嵌入式系统或不同的操作系统和硬件架构&#xff09…

spring boot初始化的几个总结

spring intializr File->New->Project 注意&#xff1a;Spring Initializer中 Java版本选择模块已经不支持1.8了。 Spring Boot 3.x要求 Java最低版本为17&#xff0c; 最新的SpringBoot版本已经要求Java22了 所以&#xff0c;你可以升级Java版本&#xff0c;使用Spri…

自定义指令directive

一、在src目录下创建一个directive文件夹 test.ts文件存放创建的自定义指令&#xff0c;index.ts用于接收所有指令进行统一处理 二、编写自定义指令 // test.ts文件 export default {// 写个自定义指令mounted(el: any, binding: any) {console.log(el, binding, "&qu…

JVM相关总结

JVM的些许问题 1.JVM内存区域划分 2.JVM类加载过程 3.JVM的垃圾回收机制 1.JVM的内存区域划分 一个运行起来的Java进程就是一个JVM虚拟机,需要从操作系统申请一大片内存,就会把内存划分成几个区域,每个区域都有不同的作用 常见的面试题 2.JVM类加载过程 熟练背诵 ! ! !…

Winform使用Flurl调用WebApi的基本用法

微信公众号“CSharp编程大全"的文章《.NET超简单轻量级的HTTP请求组件Flurl》介绍了便捷构建URL及创建HTTP请求的.NET模块Flurl。与HttpClient相比,Flurl封装的更简捷易用&#xff0c;代码量更少。本文学习并测试基于Fluri调用WebApi的基本用法。   基于Fluri调用WebApi…

怎么找python的运行路径

1.命令行中执行&#xff1a; import sys print(sys.argv[0]) 执行后为空。 2. import os os.path.abspath(os.curdir) 3. import os os.getcwd()

LeetCode-213. 打家劫舍 II【数组 动态规划】

LeetCode-213. 打家劫舍 II【数组 动态规划】 题目描述&#xff1a;解题思路一&#xff1a;分三种情况&#xff0c;一&#xff1a;不考虑头尾&#xff1b;二&#xff1a;考虑头不考虑尾&#xff1b;三&#xff1a;考虑尾不考虑头。解题思路二&#xff1a;优化空间解题思路三&am…

如何利用python画出AHP-SWOT的战略四边形(四象限图)

在企业或产业发展的相关论文分析中&#xff0c;常用到AHP-SWOT法进行定量分析&#xff0c;形成判断矩阵后&#xff0c;如何构造整洁的战略四边形是分析的最后一个环节&#xff0c;本文现将相关代码发布如下&#xff1a; import mpl_toolkits.axisartist as axisartist import …

java之命令执行审计思路

1 漏洞原理 因用户输入未过滤或净化不完全&#xff0c;导致Web应用程序接收用户输入&#xff0c;拼接到要执行的系统命令中执行。一旦攻击者可以在目标服务器中执行任意系统命令&#xff0c;就意味着服务器已被非法控制。 2 审计中常用函数 一旦攻击者可以在目标服务器中执行…

【AIGC】AnimateAnyone:AI赋予静态照片生命力的魔法

摘要&#xff1a; 在人工智能技术的不断进步中&#xff0c;AnimateAnyone项目以其创新性和易用性脱颖而出&#xff0c;成为GitHub上备受瞩目的AI项目之一。由阿里巴巴智能计算研究院开发的这一技术&#xff0c;允许用户通过提供一张静态照片&#xff0c;快速生成动态角色。本文…

SpringBoot(一)创建一个简单的SpringBoot工程

Spring框架常用注解简单介绍 SpringMVC常用注解简单介绍 SpringBoot&#xff08;一&#xff09;创建一个简单的SpringBoot工程 SpringBoot&#xff08;二&#xff09;SpringBoot多环境配置 SpringBoot&#xff08;三&#xff09;SpringBoot整合MyBatis SpringBoot&#xff08;四…

docker安装rocketMq5x以上的版本

1.背景 安装RocketMQ 5.x以上的版本主要是因为新版本引入了许多性能优化、新功能以及对已有特性的增强&#xff0c;这些改进可以帮助提升消息队列系统的稳定性和效率。 1.性能提升&#xff1a;RocketMQ 5.x版本通常包括了对消息处理速度、吞吐量和延迟的优化&#xff0c;使得系…

在Linux (Ubuntu 16) 下安装LabVIEW

用户尝试在Ubuntu 16操作系统上安装LabVIEW&#xff0c;但找不到合适的安装文件来支持Ubuntu。已经下载了运行时文件&#xff0c;并尝试将.rpm包转换为.deb包并安装在Ubuntu上。然而&#xff0c;安装完成后&#xff0c;没有在应用程序中看到LabVIEW的图标。 用户希望能够在Ubu…