LLM大模型:如何选择合适的 Embedding 模型?

检索增强生成(RAG)是生成式 AI (GenAI)中的一类应用,支持使用自己的数据来增强 LLM 模型(如 ChatGPT)的知识。

RAG 通常会用到三种不的AI模型,即 Embedding 模型、Rerankear模型以及大语言模型。本文将介绍如何根据您的数据类型以及语言或特定领域(如法律)选择合适的 Embedding 模型。

1、文本数据:MTEB 排行榜

HuggingFace 的 MTEB leaderboard 是一个一站式的文本 Embedding 模型榜!您可以了解每个模型的平均性能。

您可以将“Retrieval Average”列进行降序排序,因为这最符合向量搜索的任务。然后,寻找排名最高、占内存最小的模型。

  • Embedding 向量维度是向量的长度,即 f(x)=y 中的 y,模型将输出此结果。
  • 最大 Token 数是输入文本块的长度,即 f(x)=y 中的 x ,您可以输入到模型中。

除了通过 Retrieval 任务排序外,您还可以根据以下条件进行过滤:

  • 语言:支持法语、英语、中文、波兰语。(例如:task=retrieval, Language=chinese
  • 法律领域文本。 (例如:task=retrieval,Language=law

值得注意的是,由于部分训练数据最近才得以公开,一些 MTEB 上的 Embedding 模型可能是看似合适但实际不合适的模型,排名虚高,实际表现可能会有所不同。因此,HuggingFace 发布了一篇博客,介绍了判断模型排名是否可信的要点。点击模型链接(称为“模型卡片”)后:

  • 寻找解释模型如何训练和评估的博客和论文。仔细查看模型训练使用的语言、数据和任务。同时,寻找由知名公司创建的模型。例如,在 voyage-lite-02-instruct 模型卡片上,您会看到其他的 VoyageAI 模型列出,但不包括这个。这是一个提示!该模型是一 个overfitting 模型,不应使用!
  • 在下面的截图中,我会尝试来自 Snowflake 的新模型“snowflake-arctic-embed-1”,因为它排名较高,体积小到足以在我的笔记本电脑上运行,并且模型卡片上有博客和论文的链接。

使用 HuggingFace 的好处就是,在选择完 Embedding 模型后,如果您需要更换模型,只需要在代码中修改 model_name 即可!

代码语言:javascript

**复制

import torch
from sentence_transformers import SentenceTransformer

# Initialize torch settings
torch.backends.cudnn.deterministic = True
DEVICE = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')

# Load the model from huggingface.
model_name = "WhereIsAI/UAE-Large-V1"  # Just change model_name to use a different model!
encoder = SentenceTransformer(model_name, device=DEVICE)

# Get the model parameters and save for later.
EMBEDDING_DIM = encoder.get_sentence_embedding_dimension()
MAX_SEQ_LENGTH_IN_TOKENS = encoder.get_max_seq_length()

# Print model parameters.print(f"model_name: {model_name}")
print(f"EMBEDDING_DIM: {EMBEDDING_DIM}")
print(f"MAX_SEQ_LENGTH: {MAX_SEQ_LENGTH_IN_TOKENS}")

2、图像数据:ResNet50

有时候您可能想要搜索与输入图像相似的图片。比如,您可能在寻找更多苏格兰折耳猫的图片。在这种情况下,您可以上传一张苏格兰折耳猫的图片,并要求搜索引擎找到类似的图片。

ResNet50 是一种流行的 CNN 模型,最初由微软在 2015 年使用 ImageNet 数据训练。

同样,对于视频搜索,ResNet50 仍然可以将视频转换为 Embedding 向量。然后,对静态视频帧进行相似性搜索,返回给用户最相似的视频作为最匹配结果。

3、音频数据:PANNs

类似于以图搜图,您也可以基于输入的音频片段搜索相似音频。

PANNs(预训练音频神经网络)是常用的音频搜索 Embedding 模型,因为 PANNs 基于大规模音频数据集预训练,并且擅长音频分类和标记等任务。

4、多模态图像与文本数据:

SigLIP 或 Unum

近几年,涌现了一批针对多种非结构化数据(文本、图像、音频或视频)混合训练的 Embedding 模型。这些模型能够在同一向量空间内同时捕获多种类型的非结构化数据的语义。

多模态 Embedding 模型支持使用文本搜索图像、为图像生成文本描述或以图搜图。

OpenAI 在 2021 年推出的 CLIP 是标准的 Embedding 模型。但由于其需要用户自行进行微调,难以使用,所以到了 2024 年,谷歌推出了的 SigLIP(Sigmoidal-CLIP)。该模型在使用 zero-shot prompt时取得了不错的表现。

小型 LLM 模型如今变得越来越流行。因为这些模型不需要大型云计算集群,可以在笔记本电脑上运行。小模型占用的内存较少,延时更低,运行速度比大型模型更快。Unum 提供了多模态小型 Embedding 模型。

5、多模态文本、音频、视频数据

多模态文本-音频 RAG 系统大多使用多模态生成型 LLM。这类应用首先将声音转换为文本,生成声音-文本对,然后将文本转换为 Embedding 向量。之后您可以像往常一样使用 RAG 来检索文本。在最后一步,文本被映射回音频。

OpenAI 的 Whisper 可以将语音转录为文本。此外,OpenAI 的 Text-to-speech (TTS) 模型也可以将文本转换成音频。

多模态文本-视频的 RAG 系统使用类似的方法首先将视频映射到文本,转换为 Embedding 向量,搜索文本,并返回视频作为搜索结果。

OpenAI 的 Sora 可以将文本转换成视频。与 Dall-e 类似,您提供文本提示,而 LLM 生成视频。Sora 还可以通过静态图像或其他视频生成视频。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757663.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据质量管理-时效性管理

前情提要 根据GB/T 36344-2018《信息技术 数据质量评价指标》的标准文档,当前数据质量评价指标框架中包含6评价指标,在实际的数据治理过程中,存在一个关联性指标。7个指标中存在4个定性指标,3个定量指标; 定性指标&am…

视频号视频怎么保存到手机,视频号视频怎么保存到手机相册里,苹果手机电脑都可以用

随着数字媒体的蓬勃发展,视频已成为我们日常生活中不可或缺的一部分。视频号作为众多视频分享平台中的一员,吸引了大量用户上传和分享各类精彩视频。然而,有时我们可能希望将视频号上的视频下载下来,以下将详细介绍如何将视频号的视频。 方法…

[DASP]玩机!在组织一套音频系统之前,我们先要知道这套系统里面有什么东西。

前言 现在不是搞音频嘛,正好自己买了无源音箱,买了套DSP芯片玩一下 流程 上图是我们组织一套音频系统的流程,首先我们需要知道各个元件是做什么的 1. 音源(例如麦克风、音乐播放器等): 产生模拟音频信号…

无忧易售新功能:一键白底转换,升级产品图片质感

在电商领域不断追求卓越与效率的今天,无忧易售ERP推出一键白底转换功能,为卖家们提供前所未有的便捷与高效,改变了商品图片处理的传统模式,革新了卖家们的图片处理体验,让商品展示焕然一新,助力商家在激烈的…

Java--常用类APl(复习总结)

前言: Java是一种强大而灵活的编程语言,具有广泛的应用范围,从桌面应用程序到企业级应用程序都能够使用Java进行开发。在Java的编程过程中,使用标准类库是非常重要的,因为标准类库提供了丰富的类和API,可以简化开发过…

Softmax函数的作用

Softmax 函数主要用于多类别分类问题,它将输入的数值转换为概率分布。 具体来说,对于给定的输入向量 x [x_1, x_2,..., x_n] ,Softmax 函数的输出为 y [y_1, y_2,..., y_n] ,其中: 这样,Softmax 函数的输…

python selenium 打开网页

selenium工具类 - 文件名 seleniumkit.py 代码如下 # -*- coding:utf-8 _*-from selenium import webdriverimport os import timefrom selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from seleniu…

【Linux】解锁并发:多线程同步技术详解与应用实践

文章目录 前言:1. 同步概念2. 条件变量:实现线程间同步的!2.1. 条件变量是什么?2.2. 认识条件变量接口 3. 写一个测试代码——验证线程的同步机制4. 生产消费模型5. 生产消费模型 条件变量6. 线程池7. 可重入 VS 线程安全7.1. 概…

ModuleNotFoundError: No module named ‘_sysconfigdata_x86_64_conda_linux_gnu‘

ModuleNotFoundError: No module named _sysconfigdata_x86_64_conda_linux_gnu 1.软件环境⚙️2.问题描述🔍3.解决方法🐡4.结果预览🤔 1.软件环境⚙️ Ubuntu 20.04 Python 3.7.0 2.问题描述🔍 今天发现更新conda之后&#xff0…

【Python机器学习】分类向量——One-Hot编码(虚拟变量)

为了学习分类特征,以某国成年人收入数据集(adult)为例,adult数据集的任务是预测一名工人的收入是高于50k还是低于50k,这个数据集的特征包括工人的年龄、雇佣方式、教育水平、性别、每周工作时长、职业等。 这个任务属于…

第二届Godot游戏开发大赛来啦!

第二届Godot游戏开发大赛来啦! 我们的开发大赛正式定名为Godot Hub Festival 2024,以后将按照年份命名。 另外,本次比赛将和openKylin开源社区的SIG组们合作举办(因此也可以叫Godot openKylin开发大赛)。比赛定于2024年7月1日正式开始&#x…

基于Java的旅游景区网站系统(springboot+vue)

作者介绍:计算机专业研究生,现企业打工人,从事Java全栈开发 主要内容:技术学习笔记、Java实战项目、项目问题解决记录、AI、简历模板、简历指导、技术交流、论文交流(SCI论文两篇) 上点关注下点赞 生活越过…

瑞数(rs6)接口以及源码

测试代码截图如下:调用接口即可直接用 需要dd 有想要学习教程的也能够找我。 如有需求,欢迎+我绿泡泡。 期待你的加入!

访问外网的安全保障——反向沙箱

反向沙箱作为一种网络安全技术,其核心理念在于通过构建一个隔离且受控的环境,来有效阻止潜在的网络威胁对真实系统的影响。在当今日益复杂的网络环境中,如何借助反向沙箱实现安全上网,已成为众多用户关注的焦点。 随着信息化的发…

服务器数据恢复—异常断电导致RAID6阵列中磁盘出现坏扇区的数据恢复案例

服务器存储数据恢复环境: 一台存储中有一组由12块SAS硬盘组建的RAID6磁盘阵列,划分为一个卷,分配给几台Vmware ESXI主机做共享存储。该卷中存放了大量Windows虚拟机,这些虚拟机系统盘是统一大小,数据盘大小不确定&…

word2016中新建页面显示出来的页面没有页眉页脚,只显示正文部分。解决办法

问题描述:word2016中新建页面显示出来的页面没有页眉页脚,只显示正文部分。设置了页边距也不管用。 如图1 图1 解决: 点击“视图”——“多页”——“单页”,即可。如图2操作 图2 结果展示:如图3 图3

Nginx 1.26.1最新版部署笔记

Nginx是一个高性能的 HTTP 和反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 以下是 Nginx 的一些核心功能和特点: 高性能的 Web 服务器: Nginx 被设计为处理高并发连接,具有非常高的性能和稳定性。反向代理: …

运维锅总详解Nginx

本文尝试从Nginx特性及优缺点、为什么具有文中所述的优缺点、Nginx工作流程、Nginx最佳实践及历史演进等角度对其进行详细分析。希望对您有所帮助。 Nginx特性及优缺点 Nginx简介 Nginx(发音为 “engine-x”)是一款高性能的开源Web服务器及反向代理服…

【折腾笔记】兰空图床使用Redis做缓存

前言 最近发现我部署在群晖NAS上的兰空图床程序在高并发的情况下会导致图片加载缓慢或出现图片加载失败的情况,于是我查阅了官方文档资料并进行了一系列的测试,发现兰空图床如果开启了原图保护功能,会非常的吃CPU的性能,尤其是在…

【Cpolar】如何实现外部网络对内部网络服务的访问

希望文章能给到你启发和灵感~ 如果觉得文章对你有帮助的话,点赞 关注 收藏 支持一下博主吧~ 阅读指南 开篇说明一、基础环境说明1.1 硬件环境1.2 软件环境 二、什么是Cpolar?三、如何安装Cpolar?3.1 Mac系统安装 四、最后 开篇说…